Preface xix 1 Introduction 1. 1 Problem Definition 1. 2 Overview of Design Approach 1. 3 Computer-Aided Design 1. 4 Suggestions for Further Reading 1. 5 Summary 1. 6 Problems
2 Review of Continuous Control 2. 1 Dynamic Response 2. 1. 1 Differential Equations 2. l. 2 Laplace Transforms and Transfer Functions 2. 1. 3 Output Time Histories 2. 1. 4 The Final Value Theorem 2. 1. 5 Block Diagrams 2. 1. 6 Response versus Pole Locations 2. 1. 7 Time-Domain Specifications 2. 2 Basic Properties of Feedback 2. 2. 1 Stability 2. 2. 2 Steady-State Errors 2. 2. 3 PID Control 2. 3 Root Locus 2. 3. 1 Problem Definition 2. 3. 2 Root Locus Drawing Rules 2. 3. 3 Computer-Aided Loci 2. 4 Frequency Response Design 2. 4. 1 Specifications 2. 4. 2 Bode Plot Techniques 2. 4. 3 Steady-State Errors 2. 4. 4 Stability Margins 2. 4. 5 Bode's Gain-Phase Relationship 2. 4. 6 Design 2. 5 Compensation 2. 6 State-Space Design 2. 6. 1 Control Law 2. 6. 2 Estimator Design 2. 6. 3 Compensation: Combined Control and Estimation 2. 6. 4 Reference Input 2. 6. 5 Integral Control 2. 7 Summary 2. 8 Problems
3 Introductory Digital Control 3. 1 Digitization 3. 2 Effect of Sampling 3. 3 PID Control 3. 4 Summary 3. 5 Problems
4 Discrete Systems Analysis 4. 1 Linear Difference Equations 4. 2 The Discrete Transfer Function 4. 2. 1 The z-Transform 4. 2. 2 The Transfer Function 4. 2. 3 Block Diagrams and State-Variable Descriptions 4. 2. 4 Relation of Transfer Function to Pulse Response 4. 2. 5 External Stability 4. 3 Discrete Models of Sampled-Data Systems 4. 3. 1 Using the z-Transform 4. 3. 2 *Continuous Time Delay 4. 3. 3 State-Space Form 4. 3. 4 *State-Space Models for Systems with Delay 4. 3. 5 *Numerical Considerations in Computing ? and ? 4. 3. 6 *Nonlinear Models 4. 4 Signal Analysis and Dynamic Response 4. 4. 1 The Unit Pulse 4. 4. 2 The Unit Step 4. 4. 3 Exponential 4. 4. 4 General Sinusoid 4. 4. 5 Correspondence with Continuous Signals 4. 4. 6 Step Response 4. 5 Frequency Response 4. 5. 1 *The Discrete Fourier Transform (DFT) 4. 6 Properties of the z-Transform 4. 6. 1 Essential Properties 4. 6. 2 *Convergence of z-Transform 4. 6. 3 *Another Derivation of the Transfer Function 4. 7 Summary 4. 8 Problems
5 Sampled-Data Systems 5. 1 Analysis of the Sample and Hold 5. 2 Spectrum of a Sampled Signal 5. 3 Data Extrapolation 5. 4 Block-Diagram Analysis of Sampled-Data Systems 5. 5 Calculating the System Output Between Samples: The Ripple 5. 6 Summary 5. 7 Problems 5. 8 Appendix
6 Discrete Equivalents 6. l Design of Discrete Equivalents via Numerical Integration 6. 2 Zero-Pole Matching Equivalents 6. 3 Hold Equivalents 6. 3. 1 Zero-Order Hold Equivalent 6. 3. 2 A Non-Causal First-Order-Hold Equivalent The Triangle-Hold Equivalent 6. 4 Summary 6. 5 Problems
7 Design Using Transform Techniques 7. 1 System Specifications 7. 2 Design by Emulation 7. 2. 1 Discrete Equivalent Controllers 7. 2. 2 Evaluation of the Design 7. 3 Direct Design by Root Locus in the z-Plane 7. 3. 1 z-Plane Specifications 7. 3. 2 The Discrete Root Locus 7. 4 Frequency Response Methods 7. 4. 1 Nyquist Stability Criterion 7. 4. 2 Design Specifications in the Frequency Domain 7. 4. 3 Low Frequency Gains and Error Coefficents 7. 4. 4 Compensator Design 7. 5 Direct Design Method of Ragazzini 7. 6 Summary 7. 7 Problems
8 Design Using State-Space Methods 8. 1 Control Law Design 8. 1. 1 Pole Placement 8. 1. 2 Controllability 8. 1. 3 Pole Placement Using CACSD 8. 2 Estimator Design 8. 2. 1 Prediction Estimators 8. 2. 2 Observability 8. 2. 3 Pole Placement Using CACSD 8. 2. 4 Current Estimators 8. 2. 5 Reduced-Order Estimators 8. 3 Regulator Design: Combined Control Law and Estimator 8. 3. 1 The Separation Principle 8. 3. 2 Guidelines for Pole Placement 8. 4 Introduction of the Reference Input 8. 4. 1 Reference Inputs for Full-State Feedback 8. 4. 2 Reference Inputs with Estimators: The State-Command Structure 8. 4. 3 Output Error Command 8. 4. 4 A Comparison of the Estimator Structure and Classical Methods 8. 5 Integral Control and Disturbance Estimation 8. 5. 1 Integral Control by State Augmentation 8. 5. 2 Disturbance Estimation 8. 6 Effect of Delays 8. 6. l Sensor Delays 8. 6. 2 Actuator Delays 8. 7 *Controllability and Observability 8. 8 Summary 8. 9 Problems
9 Multivariable and Optimal Control 9. 1 Decoupling 9. 2 Time-Varying Optimal Control 9. 3 LQR Steady-State Optimal Control 9. 3. 1 Reciprocal Root Properties 9. 3. 2 Symmetric Root Locus 9. 3. 3 Eigenvector Decomposition 9. 3. 4 Cost Equivalents 9. 3. 5 Emulation by Equivalent Cost 9. 4 Optimal Estimation 9. 4. 1 Least-5quares Estimation 9. 4. 2 The Kalman Filter 9. 4. 3 Steady-State Optimal Estimation 9. 4. 4 Noise Matrices and Discrete Equivalents 9. 5 Multivariable Control Design 9. 5. 1 Selection of Weighting Matrices Q1 and Q2 9. 5. 2 Pincer Procedure 9. 5. 3 Paper-Machine Design Example 9. 5. 4 Magnetic-Tape-Drive Design Example 9. 6 Summary 9. 7 Problems
10 Quantization Effects 10. 1 Analysis of Round-Off Error 10. 2 Effects of Parameter Round-Off 10. 3 Limit Cycles and Dither 10. 4 Summary 10. 5 Problems
11 Sample Rate Selection 11. 1 The Sampling Theorem's Limit 11. 2 Time Response and Smoothness 11. 3 Errors Due to Random Plant Disturbances 11. 4 Sensitivity to Parameter Variations 11. 5 Measurement Noise and Antialiasing Filters 11. 6 Multirate Sampling 11. 7 Summary 11. 8 Problems