注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書教育/教材/教輔教材研究生/本科/??平滩?/a>泛函分析講義(下)

泛函分析講義(下)

泛函分析講義(下)

定 價:¥20.00

作 者: 張恭慶,郭懋正編著
出版社: 北京大學(xué)出版社
叢編項:
標(biāo) 簽: 泛函分析

ISBN: 9787301012611 出版時間: 1990-01-01 包裝: 平裝
開本: 20cm 頁數(shù): 269 字?jǐn)?shù):  

內(nèi)容簡介

  編輯推薦:這是一本泛函分析教材,它系統(tǒng)地介紹線性算子理論的基礎(chǔ)知識,算子半群以及連續(xù)函數(shù)空間上的Wirner測度和Hilbert空間上的Gauss測度。全書共分四章,Banach代數(shù);無界算子;算子半群以及無窮維空間上的測度論。本書注意介紹泛函分析理論與數(shù)學(xué)其它分支的密切聯(lián)系,給出豐富的例子和應(yīng)用,以培養(yǎng)讀者運用泛函分析方法解決問題的能力。 本書適用于理工科大學(xué)數(shù)學(xué)系、應(yīng)用數(shù)學(xué)系高年級本科生、研究生閱讀,并且可供一般的教學(xué)工作者、物理工作者和科學(xué)技術(shù)人員參考。

作者簡介

暫缺《泛函分析講義(下)》作者簡介

圖書目錄

第五章 Banach代數(shù)
§1代數(shù)準(zhǔn)備知識
§2 Banach代數(shù)
2.1 Banach代數(shù)的定義
2.2 Banach代數(shù)的極大理想與Gelfand表示
§3例與應(yīng)用
§4 c’代數(shù)
§5 Hilbert空間上的正常算子
5.1 Hilbert空間上正常算子的連續(xù)算符演算
5.2正常算子的譜族與譜分解定理
5.3正常算子的譜集
§6在奇異積分算子中的應(yīng)用
第六章 無界算子
§1 閉算子
§2 cayley變換與自伴算子的譜分解
2.1 cayley變換
2.2自伴算子的譜分解
§3無界正常算子的譜分解
3.1 B0rel可測函數(shù)的算子表示
3.2無界正常算子的譜分解
§4 自伴擴(kuò)張
4.1 閉對稱算子的虧指數(shù)與自伴擴(kuò)張
4.2 自伴擴(kuò)張的判定準(zhǔn)則
§5自伴算子的擾動
5.1稠定算子的擾動
5.2自伴算子的擾動
5.3 自伴算子的譜集在擾動下的變化
§6無界算子序列的收斂性
6.1預(yù)解算子意義下的收斂性
6.2圖意義下的收斂性
第七章 算子半群
§1無窮小生成元
1.1無窮小生成元的定義和性質(zhì)
1.2 Hme—Yosida定理
§2無窮小生成元的例子
§3單參數(shù)酉群和Stone定理
3.1單參數(shù)酉群的表示——stone定理
3.2 stone定理的應(yīng)用
1.B0chner定理
2.Schr6dinger方程的解
3.遍歷(ergodic)定理
3.3 Trotter乘積公式
§4 Markov過程
4.1 Markov轉(zhuǎn)移函數(shù)
4.2擴(kuò)散過程轉(zhuǎn)移函數(shù)
§5散射理論
5.1波算子
5.2廣義波算子
§6發(fā)展方程
第八章 無窮維空間上的測度論
§1 C[O,T]空間上的wiener測度
1.1 C[O,T]空間上wiener測度和wiener積分
1.2 Donsker泛函和Donske卜Lions定理
1.3 Feynman—Kac公式
§2 Hilbert空間上的測度
2.1 Hilbert—Schmidt算子和跡算子
2.2 Hilbert空間上的測度
2.3 Hilbert空間的特征泛函
§3 Hilbert空間上的Gauss測度
3.1 Gauss測度的特征泛函
3.2 Hilbert空間上非退化Gauss測度的等價性
符號表
索引

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號