注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)自然科學(xué)總論應(yīng)用數(shù)學(xué)基礎(chǔ)(上冊 修訂版)

應(yīng)用數(shù)學(xué)基礎(chǔ)(上冊 修訂版)

應(yīng)用數(shù)學(xué)基礎(chǔ)(上冊 修訂版)

定 價:¥16.00

作 者: 張緒緒主編
出版社: 西安電子科技大學(xué)出版社
叢編項: 高職系列教材
標 簽: 暫缺

ISBN: 9787560609041 出版時間: 2005-01-01 包裝: 膠版紙
開本: 26cm 頁數(shù): 246 字數(shù):  

內(nèi)容簡介

  《高職高專系列教材:應(yīng)用數(shù)學(xué)基礎(chǔ)(上冊)(修訂版)》為“應(yīng)用數(shù)學(xué)基礎(chǔ)”的上冊。《應(yīng)用數(shù)學(xué)基礎(chǔ)》分上下兩冊,共13章,上冊內(nèi)容包括:函數(shù)的極限與連續(xù)、導(dǎo)數(shù)與微分、導(dǎo)數(shù)的應(yīng)用、不定積分、定積分及其應(yīng)用、空間解析幾何、多元函數(shù)微積分初步;下冊內(nèi)容包括:常微分方程、無窮級數(shù)、拉氏變換、線性代數(shù)、概率初步和數(shù)理統(tǒng)計初步等?!稇?yīng)用數(shù)學(xué)基礎(chǔ)》的特點是:突出重點,深入淺出,對基本概念、重要公式和定理注意其幾何意義的解釋說明;用大量的實例反映數(shù)學(xué)在實際中的應(yīng)用;以圖形的直觀性解釋數(shù)學(xué)中的概念、定理。為適應(yīng)不同學(xué)生和不同專業(yè)的需要,配置了一些用號表示的內(nèi)容,以供選學(xué)。

作者簡介

暫缺《應(yīng)用數(shù)學(xué)基礎(chǔ)(上冊 修訂版)》作者簡介

圖書目錄

第1章 函數(shù)的極限與連續(xù)
1.1 初等函數(shù)
1.1.1 常量與變量
1.1.2 區(qū)間與鄰域
1.1.3 函數(shù)概念
1.1.4 函數(shù)的幾種特性
1.1.5 基本初等函數(shù)
1.1.6 復(fù)合函數(shù)
1.1.7 初等函數(shù)
1.1.8 建立函數(shù)關(guān)系舉例
習(xí)題1-1
1.2 函數(shù)的極限
1.2.1 數(shù)列的極限
1.2.2 函數(shù)的極限
習(xí)題1-2
1.3 無窮小量和無窮大量
習(xí)題1-3
1.4 極限的運算
1.4.1 極限的基本性質(zhì)
1.4.2 極限的四則運算
習(xí)題1-4
1.5 兩個重要極限
1.5.1 極限存在準則
1.5.2 兩個重要極限
習(xí)題1-5
1.6 函數(shù)的連續(xù)性
1.6.1 連續(xù)函數(shù)的概念
1.6.2 函數(shù)的間斷點
1.6.3 初等函數(shù)的連續(xù)性
1.6.4 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)
習(xí)題1-6
復(fù)習(xí)題1
第2章 導(dǎo)數(shù)與微分
2.1 導(dǎo)數(shù)概念
2.1.1 引例
2.1.2 導(dǎo)數(shù)概念
2.1.3 利用定義求導(dǎo)數(shù)
2.1.4 導(dǎo)數(shù)的幾何意義
2.1.5 可導(dǎo)與連續(xù)的關(guān)系
習(xí)題2-1
2.2 函數(shù)和、差、積、商的求導(dǎo)法則
習(xí)題2-2
2.3 復(fù)合函數(shù)的求導(dǎo)法則和反函數(shù)的導(dǎo)數(shù)
2.3.1 復(fù)合函數(shù)的求導(dǎo)法則
2.3.2 反函數(shù)的導(dǎo)數(shù)
2.3.3 基本初等函數(shù)的求導(dǎo)公式
習(xí)題2-3
2.4 高階導(dǎo)數(shù)
2.4.1 高階導(dǎo)數(shù)的概念
2.4.2 二階導(dǎo)數(shù)的力學(xué)意義
習(xí)題2-4
2.5 隱函數(shù)及由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)
2.5.1 隱函數(shù)的導(dǎo)數(shù)
2.5.2 對數(shù)求導(dǎo)法
2.5.3 由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)
習(xí)題2-5
2.6 函數(shù)的微分
2.6.1 微分的概念
2.6.2 微分在近似計算中的應(yīng)用
習(xí)題2-6
復(fù)習(xí)題2
第3章 導(dǎo)數(shù)的應(yīng)用
3.1 中值定理與羅必達法則
3.1.1 中值定理
3.1.2 羅必達法則
習(xí)題3-1
3.2 函數(shù)的單調(diào)性與極值
3.2.1 函數(shù)的單調(diào)性
3.2.2 函數(shù)的極值
習(xí)題3-2
3.3 函數(shù)的最大值與最小值
習(xí)題3-3
3.4 曲線的凹凸與拐點
習(xí)題3-4
3.5 函數(shù)圖像的描繪
3.5.1 曲線的漸近線
3.5.2 函數(shù)圖像的描繪
習(xí)題3-5
3.6 曲率
3.6.1 弧微分
3.6.2 曲率及其計算公式
3.6.3 曲率圓與曲率半徑
習(xí)題3-6
復(fù)習(xí)題3
第4章 不定積分
4.1 不定積分的概念和性質(zhì)
4.1.1 原函數(shù)與不定積分的概念
4.1.2 不定積分的性質(zhì)
習(xí)題4-1
4.2 積分的基本公式和法則
習(xí)題4-2
4.3 換元積分法
4.3.1 第一換元積分法(湊微分法)
4.3.2 第二換元積分法
習(xí)題4-3
4.4 分部積分法
習(xí)題4-4
4.5 積分表的使用
習(xí)題4-5
復(fù)習(xí)題4
第5章 定積分及其應(yīng)用
5.1 定積分的概念
5.1.1 引例
5.1.2 定積分的定義
5.1.3 定積分的性質(zhì)
習(xí)題5-1
5.2 定積分的基本公式
5.2.1 積分上限函數(shù)
5.2.2 微積分基本公式
習(xí)題5-2
5.3 定積分的計算
5.3.1 換元積分法
5.3.2 分部積分法
習(xí)題5-3
5.4 廣義積分
5.4.1 無窮區(qū)間的廣義積分
5.4.2 無界函數(shù)的廣義積分
習(xí)題5-4
5.5 定積分的幾何應(yīng)用
5.5.1 平面圖形的面積
5.5.2 旋轉(zhuǎn)體的體積
5.5.3 函數(shù)在區(qū)間上的平均值
5.5.4 平面曲線的弧長
習(xí)題5-5
5.6 定積分在物理中的應(yīng)用
5.6.1 變力所作的功
5.6.2 水壓力
習(xí)題5-6
復(fù)習(xí)題5
第6章 空間解析幾何
6.1 空間直角坐標系
6.1.1 空間點的直角坐標
6.1.2 兩點間距離公式和線段中點坐標公式
習(xí)題6-1
6.2 向量
6.2.1 向量的概念
6.2.2 向量在坐標軸上的投影
6.2.3 向量與數(shù)量的乘積及向量坐標
習(xí)題6-2
6.3 兩向量的數(shù)量積與向量積
6.3.1 兩向量的數(shù)量積
6.3.2 兩向量的向量積
習(xí)題6-3
6.4 平面與空間直線
6.4.1 平面及其方程
6.4.2 兩平面的夾角和點到平面的距離
6.4.3 空間直線方程
6.4.4 兩直線的夾角和直線與平面的夾角
習(xí)題6-4
6.5 曲面與空間曲線
6.5.1 曲面與方程
6.5.2 一次曲面
6.5.3 空間曲線及其方程
習(xí)題6-5
復(fù)習(xí)題6
第7章 多元函數(shù)微積分初步
7.1 多元函數(shù)的概念及其極限與連續(xù)
7.1.1 多元函數(shù)的概念
7.1.2 二元函數(shù)的極限與連續(xù)
習(xí)題7-1
7.2 偏導(dǎo)數(shù)和高階偏導(dǎo)數(shù)
7.2.1 偏導(dǎo)數(shù)
7.2.2 高階偏導(dǎo)數(shù)
習(xí)題7-2
7.3 全微分
習(xí)題7-3
7.4 多元復(fù)合函數(shù)、隱函數(shù)的導(dǎo)數(shù)
7.4.1 多元復(fù)合函數(shù)的導(dǎo)數(shù)
7.4.2 隱函數(shù)的求導(dǎo)公式
習(xí)題7-4
7.5 多元函數(shù)的極值
習(xí)題7-5
7.6 多元函數(shù)微分法的幾何應(yīng)用
7.6.1 空間曲線的切線與法平面
7.6.2 曲面的切平面與法線
習(xí)題7-6
7.7 重積分
7.7.1 二重積分的概念
7.7.2 二重積分的性質(zhì)
7.7.3 二重積分的計算
7.7.4 二重積分的應(yīng)用
習(xí)題7-7
7.8 曲線積分
7.8.1 對弧長的曲線積分的概念
7.8.2 對弧長的曲線積分的計算法
7.8.3 對坐標的曲線積分的概念
7.8.4 對坐標的曲線積分的計算法
習(xí)題7-8
7.9 曲線積分與路徑無關(guān)的條件
7.9.1 格林公式
7.9.2 平面曲線積分與路徑無關(guān)的條件
習(xí)題7-9
復(fù)習(xí)題7
積分表
習(xí)題參考答案
參考文獻

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號