本書由World Scientific出版,它是以國際著名算法專家,我國臺(tái)灣出身的李德財(cái)教授所主編的系列叢書——Lecture Notes Series on Computing——中的一本。該書組織簡明、概括,且包含當(dāng)前市面上算法書較少涉及的概率算法和近似算法的基本內(nèi)容,是一本適合本科學(xué)生算法的好書。該書涉及及數(shù)據(jù)結(jié)構(gòu)的部分較少,即使有一些,表述也很快與算法中比較復(fù)雜的集合查找和合并運(yùn)算等相結(jié)合,使讀者不會(huì)感到和已經(jīng)學(xué)過的數(shù)據(jù)結(jié)構(gòu)相重復(fù)。這比較適合中國大學(xué)計(jì)算機(jī)系中數(shù)據(jù)結(jié)構(gòu)和算法分成兩門開設(shè)的實(shí)際狀況。對(duì)于想了解NP完全問題基本概念的讀者,本書的篇幅給了他們基本的但又清楚的描繪。本書還包括計(jì)算幾何一章,其取材也是適中的。概率算法和近似算法是近20年算法研究迅猛發(fā)展的領(lǐng)域,本書給予了足夠的重視。這也是本書特色之一。本書的另一個(gè)特色是以算法的設(shè)計(jì)技術(shù)為綱,講述一個(gè)又一個(gè)的算法技術(shù),然后分析其算法復(fù)雜性。
作者簡介
暫缺《算法設(shè)計(jì)技巧與分析:英文版》作者簡介
圖書目錄
Preface PART 1 Basic Concepts and Introduction to Algorithms Chapter 1 Basic Concepts in Algorithmic Analysis 1.1 Introduction l.2 Historical BaCkground 1.3 Binary Search 1.3.1 Analysis of the binary search algorithm 1.4 Merging Two Sorted Lists 1.5 Selectinn Sort 1.6 Insertion Sort 1.7 Bottom-Up Merge Sorting 1.7.1 Analysis of bottom-up merge sorting 1.8 Time Complexity 1.8.1 Order of growth 1.8.2 The O-notation 1.8.3 The fl-notation l.8.4 The e-notation 1.8.5 MamPles 1.8.6 Complekity classes and the o-notation 1.9 Space Complexity 1.10 Optimal Algorithms
1.1l How to Bstimate the Running Time of an Algorithm 1.l1.1 Couliting the number of forrations l.1l.2 Counting the frequency of basic operatha 1.1l.3 Using recurrence relations 1.l2 Worst case and average case analysis l.12.1 Wofst case analysis 1.12.2 Average case analysis l.13 Amedised Analyais 1.14 Input Sise and Problem Instance 1.15 Exercises 1.16 Bibiographic Notes Chapter 2 Mathematical Preliminaries 2.1 Sots, Reations and Annctions 2.1.1 sets 2.1.2 ffelations 2.1.2.l Equivalence relations 2.1.3 Thnctions 2.2 Proof Mehods 2.2.1 Direct proof 2.2.2 Indirect proof 2.2.3 Proof by colltradiction 2.2.4 Proof by cotillterexample 2.2.5 Mathematical induction 2.3 Logarithms 2.4 Floor and Ceiling Tunctions 2.5 Factorial and Binomial Coefficients 2.5.1 Factorials 2.5.2 Bintalal coefficients 2.6 The Pigeonhole Principle 2.7 Summations 2.7.1 Approkimation of summations by integration 2.8 Recurrence Relations 2.8.1 Solution of linear homogeneous recurrences 2.8.2 Solution of inhomogeneous recurrences 2.8.3 Solation of divide-and-conquer recurrence 2.8.3.1 Expanding the recurrence 2.8.3.2 Sutistitution 2.8.3.3 Change of variables 2.9 Exercises Chapter 3 Data Structures 3.1 Introdction 3.2 Linked Lists 3.2.1 Stacks ana queues 3.3 Graphs 3.3.1 Representation of graphs 3.3.2 planar graphs 3.4 Trees 3.5 Rooted Trees 3.5.1 Tree traversals 3.6 Binary Trees 3.6.l Some quantitative aspects of binary trees 3.6.2 Binary search trees 3.7 Exercises 3.8 Blbliographic Notes Chapter 4 Heaps and the Disjoint Sets Data Structure 4.l Iotroduction 4.2 Heaps 4.2.1 Operations on heaps 4.2.2 Creating a heap 4.2.3 Heapsort 4.2.4 Min and max heaps 4.3 Disjoint Sets Data Structures 4.3.1 The union by rank heuristic 4.3.2 Path compression 4.3.3 The union-find algorithms 4.3.4 Analysis of the uninn-find algorithms 4.4 Exercises 4.5 Bibliographic Notes PART 2 Techniques Based on Recursion Chapter 5 Induction
5.1 Introduction 5.2 Two Simple Examples 5.2.1 Selection sort 5.2.2 Insertion sort 5.3 Tadix Sort 5.4 Integer Exponentiation 5.5 Evaluating Polynomials (Horner's Rule) 5.6 Generating Permutations 5.6.1 The first algorithm 5.6.2 The second algorithm 5.7 Finding the Majority Element 5.8 Exercises 5.9 Bibliographic Notes Chapter 6 Divide and Conquer 6.1 Introduction 6.2 Binary Search 6.3 Mergesort 6.3.1 How the algorithm works 6.3.2 Analysis of the mergesort algorithm 6.4 The Divide and Conquer Paradigm 6.5 Selection: Finding the Median and the kth Smallest Element 6.5.l Analysis of the selection algorithm 6.6 Quicksort 6.6.1 A partitinning algorithm. 6.6.2 The sorting algorithm 6.6.3 Analysis of the quicksort algorithm 6.6.3.1 The worst case behavior 6.6.3.2 The average case behavior 6.6.4 Comparison of sorting algorithms 6.7 Multiplication of Large Integers 6.8 Matrin Multiplication 6.8.1 The traditional algorithm 6.8.2 Recursive version 6.8.3 Strassen's algorithm 6.8.4 Comparisons of the three algorithms 6.9 The Closest Pair Prob1em 6.9.1 Time complekity 6.10 Exercises 6.11 BibliograPhic Notes Chapter 7 Dynamic Programming 7.1 Introduction 7.2 The Longed Common Subsequence Problem 7.3 Matris Chain Multiplication 7.4 The Dynamic Programming Paradigm 7.5 The All-Pairs Shortest Path Problem. 7.6 The Knapsack Problem 7.7 Exercises 7.8 Bibliographic Notes PART 3 First-Cut Techniques Chapter 8 The Greedy Approach 8.1 Introduction 8.2 The Shortest Path Problem 8.2.1 A linear time algorithm for dense graphs 8.3 Minimum Cost Spanning nees (Kruskal's Algorithm) 8.4 Minimum Cost Spanning nees (Prim's Algorithm) 8.4.1 A linear time algorithm for dense graphs 8.5 File Compression 8.6 Exercises 8.7 Bibliographic Notes Chapter 9 Graph Thaversal 9.1 Introduction 9.2 Depth-First Search 9.2.1 Time'complexity of depth-first search 9.3 Applications of Depth-First Search 9.3.1 Graph acyclicity 9.3.2 Topological sorting 9.3.3 Finding articulation points in a graph 9.3.4 Strongly connected components 9.4 Breadth-First Search 9.5 Applications of Breadth-First Sparch
9.6 Exercises 9.7 Bibliographic Notes PART 4 Complexity of Problems Chapter 10 NP-Complete Problems 10.l Illtroduction 10.2 The Class P 10.3 The Class NP 10.4 NP-Complete Problems 10.4.1 The satisfiability problem 10.4.2 Vertex cover, independent set and clique problems 10.4.3 More NP-complete Problems 10.5 The Class co-NP 10.6 The Class NPI 10.7 The Relationips Between the Four Classes l0.8 Exercises 10.9 Biblioaraphic Notes Chapter 11 Introduction to Computational Complexity 11.1 Introduction 11.2 Mode of Computation: Tlie Turing Machine 11.3 k-tape Thring Machines and Time complexity 11.4 Off-Line Turing Machines and Space Complexity 11.5 Tape Compression and Linear Speed-Up 11.6 Relationships Between complexity Classes l1.6.1 Space and for hieraxchy theorems. 11.6.2 Padding arguments ll.7 Reductions 11.8 Completeness 1l.8.1 NLOGSPACE-complete problems 11.8.2 PSPACE-complete problems 11.8.3 P-complete problems 11.8.4 Some conclusions of completeness 11.9 The Polynomial Time Hierarchy 11.10 Exercises 11.11 Bibliographic Notes Chapter 12 Lower Bouuds 12.1 Introduction 12.2 Trivial Lower Bounds 12.3 The Decision Tree Model 12.3.1 The search problem 12.3.2 The sorting problem l2.4 The Algebraic Decision Tree Model l2.4.1 The element uniqueness problem 12.5 Linear Time bouctions 12.5.1 The convex hull problem 12.5.2 The closest pair problem 12.5.3 The Euclidean minimum spanning tree problem 12.6 Exercises 12.7 Bibliographic Notes PART 5 Coping with Hardness Chapter 13 Backtracking 13.1 Introduction 13.2 The 3-Coloring Problem 13.3 The 8-Queens Problem 13.4 The General Backtracking Method 13.5 Branch and Bound 13.6 Exercises 13.7 Bib1iographic notes Chapter 14 Randomized Algorithms 14.l Introduction 14.2 Las Vegas and Moote Carlo Algorithms 14.3 Randomised Quicksort l4.4 Randomized Selection l4.5 Testing String Equality 14.6 Pattern Matching 14.7 Random Sampling l4.8 Primality Testing 14.9 Exercises 14.10 Bibliographic Notes
Chapter 15 Approximation Algorithms 15.1 Introduction 15.2 Basic Definitions l5.3 Difference Bounds 15.3.1 Planar graph coloring 15.3.2 Hardness result: the knapsack problem 15.4 Relative Performance Bounds 15.4.1 The bin packing problem 15.4.2 The Euclidean traveling salesman problem l5.4.3 The vertex cover problem 15.4.4 Hardness resu1t: the traveling sa1esman problem 15.5 Polynomial Approximation Schemes 15.5.1 The knapsack problem 15.6 Fully Po1ynomial Approximation Schemes 15.6.1 The subset-sum problem 15.7 Exercises 15.8 BibliograPhic NOtes PART 6 Iterative Improvement for Domain-Specific Problems Chapter 16 Network Flow 16.1 Introduction 16.2 Pre1iminaries 16.3 The Ford-Fulkerson Method 16.4 Mtalmum Capacity Augmelltation 16.5 Shortest Path Augmentation 16.6 Dinic's Algorithm 16.7 The MPM Algorithm 16.8 Exercises 16.9 Bibliographic Notes Chapter 17 Matching 17.1 Introduction l7.2 Preliminaries 17.3 Tbe Network Flow Method 17.4 The Hungarian Tree Method for Bipartite Graphs 17.5 Maximum Matching in General Graphs 17.6 An O(n) Algorithm for Bipwtite Graphs 17.7 Exercises 17.8 Bibllogranfor Notes PART 7 Techniques in Computational Geometry Chapter 18 Geometric Sweeping 18.1 Introduction 18.2 Geometric Preliminaries l8.3 Computing the Intersections of Line Segments 18.4 The Convex Hull Problem 18.5 Computing the Diameter of a Set of Points 18.6 Exercises 18.7 Bib1iographic Notes Chapter 19 Voronoi Diagrams l9.1 Introduction 19.2 Nearest-Point Voronoi Diagram 19.2.1 Delaunay triangulation 19.2.2 Construction of the Voronoi diagram l9.3 Applications of the Voronoi Diagram 19.3.1 Computing the convex hull 19.3.2 All nearest neighbors 19.3.3 The Euclidean minimum spanning tree 19.4 Farthed-Point Voronoi Diagram 19.4.1 Construction of the farthest-point Voronoi diagram 19.5 Applications of the Farthest-Point Voronoi Diagram 19.5.1 All farthest neighbors 19.5.2 Smallest enclosing circle 19.6 Exercises l9.7 Bibliographic Notes Bibliography Index