Preface
PartOne:FourierSeriesandPeriodicDistributions
1Preliminaries
1.1BasicDefinitionsandExamples
1.2ClassificationintoTypes
1.3Boundaryand/orInitialValueProblems
1.4SeparationofVariables:HeatFlowinaBar
1.5TheSchrodingerandtheWaveEquations
1.6TheDirichletProblemintheUnitCircle
1.7MaximumPrinciplesandUniqueness
2FourierSeries:BasicTheory
2.1SpacesofPeriodicFunctionsandSequences
2.2TheFourierTransform
2.3GeometricInterpretation
2.4DecayandDifferentiability
2.5TheInversionFormula:PointwiseConvergence
2.6PeriodicHeatFlow
2.7ApproximateIdentitiesandSummability
2.8CesaroSummability
3PeriodicDistributionsandSobolevSpaces
3.1CPeriodicFunctions
3.2PeriodicDistributions
3.3TopologicalRemarks
3.4FourierSeriesin
3.5TheConvolutionin
3.6SobolevSpaces
PartTwo:ApplicationstoPartialDifferentialEquations
4LinearEquations
4.1AFunctionalCalculus
4.2LinearEvolutionEquationsinHsper
4.3StronglyContinuousSemigroups*
4.4TheWaveEquation
5NonlinearEvolutionEquations
5.1LocalWell-PosednessRevisited
5.2MaximalIntervalsofExistence
5.3GNLSasaHamiltonianSystem
6TheKorteweg--deVriesEquation
6.1TheRegularizedProblem
6.2SomeFundamentalEstimates
6.3LocalWell-Posedness
6.4GlobalWell-Posedness
PartThree:SomeNonperiodieProblems
7Distributions,FourierTransformandLinearEquations
7.1Distributions
7.2TheFourierTransform
7.3Convolutions
7.4L2-typeSobolevSpacesinRn
7.5TheHeatand(Free)SchriSdingerEquations
8KdV,BOandFriends
8.1TheHs(R)Theory
8.2KdVinWeightedSobolevSpaces
8.3BOinWeightedSobolevSpaces
8.4Bore-likeInitialConditions
AppendixAToolsfromtheTheoryofODEs
AppendixBCommutatorEstimates
Bibliography
Index