注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)自然科學(xué)總論數(shù)理統(tǒng)計與應(yīng)用:英文版

數(shù)理統(tǒng)計與應(yīng)用:英文版

數(shù)理統(tǒng)計與應(yīng)用:英文版

定 價:¥49.80

作 者: (美)Irwin Miller,(美)Marylees Miller著
出版社: 清華大學(xué)出版社
叢編項(xiàng): 國外大學(xué)優(yōu)秀教材統(tǒng)計學(xué)系列
標(biāo) 簽: 數(shù)理統(tǒng)計

ISBN: 9787302101420 出版時間: 2005-01-01 包裝: 膠版紙
開本: 23cm 頁數(shù): 618 字?jǐn)?shù):  

內(nèi)容簡介

  本書是為使用概率統(tǒng)計較多的理工科本科生和研究生編寫的有關(guān)統(tǒng)計推理的理論、思維和方法的教材。與當(dāng)前國內(nèi)一般理工科的流行教材中的統(tǒng)計部分相比,本書有以下特點(diǎn):(1)理論難度適中,覆蓋面比目前國內(nèi)的中文教材略大,包括了判決理論、博弈理論、Neyman-Pearson理論、似然比檢驗(yàn)、計數(shù)數(shù)據(jù)的統(tǒng)計、Bayes統(tǒng)計和非參數(shù)統(tǒng)計等內(nèi)容。學(xué)習(xí)本書只需要有初等微積分與線性代數(shù)等數(shù)學(xué)知識。(2)論述深度的把握與發(fā)展較為合理。例如,在估計方法中介紹了有效性、充分性、穩(wěn)健性等理論概念。(3)應(yīng)用面較為豐富,統(tǒng)計思想的闡述與算法更為具體。本書在正文與習(xí)題中引用了近代統(tǒng)計技術(shù)和在各個應(yīng)用領(lǐng)域中應(yīng)用的大量例子,并通過統(tǒng)計軟件Minitab利用計算機(jī)進(jìn)行數(shù)值計算。(4)語言簡潔、流暢,便于閱讀。

作者簡介

  責(zé)任者中文姓名取自版權(quán)頁

圖書目錄

Preface
1 Introduction
1.1
Introduction
1.2
Combinatorial Methods
1.3
Binomial Coefficients
1.4
The Theory in Practice
2 Probability
2.1
Introduction
2.2
Sample Spaces
2.3
Events
2.4
The Probability of an Event
2.5
Some Rules of Probability
2.6
Conditional Probability
2.7
Independent Events
2.8
Bayes'' Theorem
2.9
The Theory in Practice
3 Probability Distributions and Probability Densities
3.1
Random Variables
3.2
Probability Distributions
3.3
Continuous Random Variables
3.4
Probability Density Functions
3.5
Multivariate Distributions
3.6
Marginal Distributions
3.7
Conditional Distributions
3.8
The Theory in Practice
4 Mathematical Expectation
4.1
Introduction
4.2
The Expected Value of a Random Variable
4.3
Moments
4.4
Chebyshev''s Theorem
4.5
Moment-Generating Functions
4.6
Product Moments
4.7
Moments of Linear Combinations of Random Variables
4.8
Conditional Expectations
4.9
The Theory in Practice
5 Special Probability Distributions
5.1
Introduction
5.2 The Discrete Uniform Distribution
5.3
The Bernoulli Distribution
5.4
The Binomial Distribution
5.5
The Negative Binomial and Geometric Distributions
5.6
The Hypergeometric Distribution
5.7
The Poisson Distribution
5.8
The Multinomial Distribution
5.9
The Multivariate Hypergeometric Distribution
5.10 The Theory in Practice
6 Special Probability Densities
6.1
Introduction
6.2
The Uniform Distribution
6.3
The Gamma, Exponential, and Chi-Square Distributions
6.4
The Beta Distribution
6.5
The Normal Distribution
6.6
The Normal Approximation to the Binomial Distribution
6.7
The Bivariate Normal Distribution
6.8
The Theory in Practice
7 Functions of Random Variables
7.1
Introduction
7.2
Distribution Function Technique
7.3
Transformation Technique: One Variable
7.4
Transformation Technique: Several Variables
7.5
Moment-Generating Function Technique
7.6
The Theory in Application
8 Sampling Distributions
8.1
Introduction
8.2
The Distribution of the Mean
8.3
The Distribution of the Mean: Finite Populations
8.4
The Chi-Square Distribution
8.5
The t Distribution
8.6
The F Distribution
8.7
Order Statistics
8.8
The Theory in Practice
9 Decision Theory
9.1
Introduction
9.2
The Theory of Games
9.3
Statistical Games
9.4
Decision Criteria
9.5
The Minimax Criterion
9.6
The Bayes Criterion
9.7
The Theory in Practice
10 Point Estimation
10.1 Introduction
10.2 Unbiased Estimators
10.3 Efficiency
10.4 Consistency
10.5 Sufficiency
10.6 Robustness
10.7 The Method of Moments
10.8 The Method of Maximum Likelihood
10.9 Bayesian Estimation
10.10 The Theory in Practice
11 Interval Estimation
11.1 Introduction
11.2 The Estimation of Means
11.3 The Estimation of Differences Between Means
11.4 The Estimation of Proportions
11.5 The Estimation of Differences Between Proportions
11.6 The Estimation of Variances
11.7 The Estimation of the Ratio of Two Variances
11.8 The Theory in Practice
12 Hypothesis Testing
12.1 Introduction
12.2 Testing a Statistical Hypothesis
12.3 Losses and Risks
12.4 The Neyman-Pearson Lemma
12.5 The Power Function of a Test
12.6 Likelihood Ratio Tests
12.7 The Theory in Practice
13 Tests of Hypothesis Involving Means, Variances,and Proportions
13.1 Introduction
13.2 Tests Concerning Means
13.3 Tests Concerning Differences Between Means
13.4 Tests Concerning Variances
13.5 Tests Concerning Proportions
13.6 Tests Concerning Differences Among k Proportions
13.7 The Analysis of an r x c Table
13.8 Goodness of Fit
13.9 The Theory in Practice
14 Regression and Correlation
14.1 Introduction
14.2 Linear Regression
14.3 The Method of Least Squares
14.4 Normal Regression Analysis
14.5 Normal Correlation Analysis
14.6 Multiple Linear Regression
14.7 Multiple Linear Regression Matrix Notation
14.8 The Theory in Practice
15 Design and Analysis of Experiments
15.1 Introduction
15.2 One-Way Designs
15.3 Randomized-Block Designs
15.4 Factorial Experiments
15.5 Multiple Comparisons
15.6 Other Experimental Designs
15.7 The Theory in Practice
16 Nonparametrie Tests
16.1 Introduction
16.2 The Sign Test
16.3 The Signed-Rank Test
16.4 Rank-Sum Tests: The U Test
16.5 Rank-Sum Tests: The H Test
16.6 Tests Based on Runs
16.7 The Rank Correlation Coefficient
16.8 The Theory in Practice
APPENDICES
A Sums and Products
A.1 Rules for Sums and Products
A.2 Special Sums
B Special Probability Distributions
B.1 Bernoulli Distribution
B.2 Binomial Distribution
B.3 Discrete Uniform Distribution Special Case
B.4 Geometric Distribution
B.5 Hypergeometric Distribution
B.6 Negative Binomial Distribution
B.7 Poisson Distribution
C Special Probability Densities
C.1 Beta Distribution
C.2 Cauchy Distribution
C.3 Chi-Square Distribution
C.4 Exponential Distribution
C.5 F Distribution
C.6 Gamma Distribution
C.7 Normal Distribution
C.8 t Distribution Student''s-t Distribution
C.9 Uniform Distribution Rectangular Distribution
Statistical Tables
Answers to Odd-Numbered Exercises
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號