注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)自然科學(xué)總論貝葉斯方法:英文版

貝葉斯方法:英文版

貝葉斯方法:英文版

定 價(jià):¥45.00

作 者: (美)Thomas Leonard,(美)John S.J.Hsu著
出版社: 機(jī)械工業(yè)出版社
叢編項(xiàng): 經(jīng)典原版書庫
標(biāo) 簽: 暫缺

ISBN: 9787111158325 出版時(shí)間: 2005-01-01 包裝: 平裝
開本: 24cm 頁數(shù): 333 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  “本書提供了有關(guān)最新現(xiàn)代貝葉斯統(tǒng)計(jì)方法的重要題材,文筆流暢,語言優(yōu)美,其突出的特點(diǎn)是包括大量實(shí)際應(yīng)用,涉及若干領(lǐng)域中AIC和BIC模型選擇標(biāo)準(zhǔn)的運(yùn)用和對(duì)比,通過效用理論以獨(dú)特方式處理貝葉斯決策論,并論述了貝葉斯過程的頻度特性,配備了可以擴(kuò)展與加深書中內(nèi)容的有趣和適中的自學(xué)練習(xí)?!薄狹ichael J.Evans,Mathematical Review“以嚴(yán)密、純熟的文筆介紹貝葉斯建模的基本原則,選材深思熟慮,按照研究生層次引入貝葉斯方法?!薄狫ournal of the American Statistical Association貝葉斯“后驗(yàn)分布”或“預(yù)測(cè)分布”是對(duì)有關(guān)未知參或未來觀測(cè)所需了解的每項(xiàng)事物的概括。本書以一種強(qiáng)有力和貼切的方式說明了如何運(yùn)用貝葉斯統(tǒng)計(jì)技術(shù),引導(dǎo)讀者從具體數(shù)據(jù)中推測(cè)有關(guān)科學(xué)、醫(yī)療與社會(huì)問題的結(jié)論。本書解釋了貝葉斯方法論所需的一些細(xì)微假設(shè),并展示了如何運(yùn)用這些假設(shè)去獲取準(zhǔn)確結(jié)論。本書所介紹的各種方法對(duì)計(jì)算機(jī)模擬的頻度特性方面也非常適用。本書生動(dòng)地概述了有關(guān)費(fèi)希爾方法(頻度方法),同時(shí)全面強(qiáng)調(diào)了似然性,適合作為主流統(tǒng)計(jì)學(xué)的教程。本書講述了效用理論的進(jìn)展以及時(shí)間序列和預(yù)測(cè),從而也適合計(jì)量經(jīng)濟(jì)學(xué)的學(xué)生閱讀。另外,本書還包括線性模型、范疇數(shù)據(jù)分析、生存競(jìng)爭(zhēng)分析、隨機(jī)效應(yīng)模型和非線性平滑等內(nèi)容。本書提供了許多運(yùn)行實(shí)例、自學(xué)練習(xí)和實(shí)際應(yīng)用,可作為高年級(jí)本科生和研究生的教材,同時(shí)也可供其他交叉學(xué)科的研究人員閱讀。

作者簡(jiǎn)介

  Thomas Leonard 于1973年在倫敦大學(xué)獲得統(tǒng)計(jì)學(xué)博士學(xué)位。他曾在沃里克大學(xué)工作過,于1995年擔(dān)任愛丁堡大學(xué)統(tǒng)計(jì)學(xué)系主席,還曾做過威斯康星-麥迪遜大學(xué)統(tǒng)計(jì)學(xué)教授。20世紀(jì)80年代,他最早將拉普斯算子引入到貝葉斯方法中。他發(fā)表了多篇有關(guān)統(tǒng)計(jì)學(xué)應(yīng)用方面的論文,并作為統(tǒng)計(jì)學(xué)專家參與過多個(gè)美國(guó)法律訴訟案件。John S.J.Hsu 加州大學(xué)圣芭芭拉分校統(tǒng)計(jì)學(xué)與應(yīng)用概率論副教授、統(tǒng)計(jì)實(shí)驗(yàn)室主任,擅長(zhǎng)研究應(yīng)用問題,還建立了貝葉斯理論研究計(jì)劃。由于在log-線性模型分析方面的貢獻(xiàn),他獲得了愛丁堡大學(xué)的名譽(yù)職位。在Thomas Leonard和Kam-Wah Tsui的指導(dǎo)下,他于1990年在威斯康星-麥迪遜大學(xué)獲得統(tǒng)計(jì)學(xué)博士學(xué)位。

圖書目錄

1 Introductory Statistical Concepts
1.0 Preliminaries and Overview
1.1 Sampling Models and Likelihoods
1.2 Practical Examples
1.3 Large Sample Properties of Likelihood Procedures
1.4 Practical Examples
1.5 Some Further Properties of Likelihood
1.6 Practical Examples
1.7 The Midcontinental Rift
1.8 A Model for Genetic Traits in Dairy Science
1.9 Least Squares Regression with Serially Correlated Errors
1.10 Annual World Crude Oil Production (1880-1972)2 The Discrete Version of Bayes' Theorem
2.0 .preliminaries and Overview
2.1 Bayes' Theorem
2.2 Estimating a Discrete-Valued Parameter
2.3 Applications to Model Selection
2.4 Practical Examples
2.5 Logistic Discrimination and the Construction of Neural Nets
2.6 Anderson's Prediction of Psychotic Patients
2.7 The Ontario Fetal Metabolic Acidosis Study
2.8 Practical Guidelines
3 Models with a Single Unknown Parameter
3.0 Preliminaries and Overview
3.1 The Bayesian Paradigm
3.2 Posterior and Predictive Inferences
3.3 Practical Examples
3.4 Inferences for a Normal Mean with Known Variance
3.5 Practical Examples
3.6 Vague Prior Information
3.7 Practical Examples
3.8 Bayes Estimators and Decision Rules and Their
Frequency Properties
3.9 Practical Examples
3.10 Symmetric Loss Functions
3.11 Practical Example: Mixtures of Normal Distributions
4 The Expected Utility Hypothesis
4.0 Preliminaries and Overview
4.1 Classical Theory
4.2 The Savage Axioms
4.3 Modifications to the Expected Utility Hypothesis
4.4 The Experimental Measurement of 6-Adjusted Utility
4.5 The Risk-Aversion Paradox
4.6 The Ellsberg Paradox
4.7 A Practical Case Study
5 Models with Several Unknown Parameters
5.0 Preliminaries and Overview
5.1 Bayesian Marginalization
5.2 Further Methods and Practical Examples
5.3 The Kalman Filter
5.4 An On-Line Analysis of Chemical Process Readings
5.5 An Industrial Control Chart
5.6 Forecasting Geographical Proportions for World Sales of Fibers
5.7 Bayesian Forecasting in Economics
6 Prior Structures, Posterior Smoothing, and Bayes-Stein Estimation
6.0 Preliminaries and Overview
6.1 Multivariate Normal Priors for the Transformed Parameters
6.2 Posterior Mode Vectors and Laplacian Approximations
6.3 Prior Structures, and Modeling for Nonrandomized Data
6.4 Monte Carlo Methods and Importance Sampling
6.5 Further Special Cases and Practical Examples
6.6 Markov Chain Monte Carlo (MCMC) Methods:The Gibbs Sampler
6.7 Modeling Sampling Distributions, Using MCMC
6.8 Equally Weighted Mixtures and Survivor Functions
6.9 A Hierarchical Bayes Analysis
References
Author Index
Subject Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)