由John J.Dazzo和Constantine H.Houpis編著的“Linear Control system Analysis and Design”五書,初版本出版于1975年,現(xiàn)今的第四版出版于1995年。本書的定位是為期望獲得控制理論的堅實基礎(chǔ)的工程系科本科生提供一本內(nèi)容智謀和可讀性好的教材。在安排上覆蓋了經(jīng)典控制理論和現(xiàn)代控制理論的基礎(chǔ)部分;在對象上包括了連續(xù)控制系統(tǒng)和數(shù)字控制系統(tǒng);在方法上兼顧了頻率響應(yīng)法、根軌跡法和狀態(tài)空間法;在論述上涉及到控制系統(tǒng)模型的建立、系統(tǒng)特性和性能的分析、以及基于狀態(tài)反饋和輸出反饋的控制器的設(shè)計等基本部分。本書問世以來,以其內(nèi)容的基礎(chǔ)性,論述的嚴謹性,教學(xué)的適用性,內(nèi)容的不斷刪舊更新,而被癥狀國多所知名大學(xué)采用作為控制理論與控制工程專業(yè)方向的本科層次的控制理論教材或主要教學(xué)參考書。
作者簡介
暫缺《線性控制系統(tǒng)分析與設(shè)計(第4版 英文影印版)》作者簡介
圖書目錄
Preface 1 Introduction 1.1 Introduction 1.2 Introduction to ControlSystems 1.3 Definitions 1.4 HistoricalBackground 1.5 DigitalControlDevelopment 1.6 MathematicalBackground 1.7 GeneralNature of the Engineering ControlProblem 1.8 Computer Literacy 1.9 Outline of Text 2 Writing System Equations 2.1Introduction 2.2 Electric Circuits and ComPOnents 2.3 Basic Linear Matrix Algebra 2.4 State Concepts 2.5 Transfer Function and Block Diagram 2.6 MechanicalTranslation Systems 2.7 Analogous Circuits 2.8 MechanicalRotationalSystems 2.9 ThermalSystems 2.10 Hydraulic Linear Actuator 2.ll Liquid-LevelSystem 2.12 Rotating Power Amplifiers 2.13 DC Servomotor 2.14 AC Servomotor 2.15 Lagranges Equation 2.16 Summary 3 Solution of DifferentialEquations 3.1Introduction 3.2 Standard Inputs to ControlSystems 3.3 Steady-State Response f SinusoidalInput 3.4 Steady-State Response: PolynomialInput 3.5 Transient Response f ClassicalMethod 3.6 Definition of Time Constant 3.7 Example f Second-Order System--Mechanical 3.8 Example: Second-Order System--Electrical 3.9 Second-Order Transients 3.10 Time-Response Specifications 3.1l CAD Accuracy Checks (CADAC) 3.12 State-Variable Equations 3.13 Characteristic Values 3.14 Evaluating the State Transition Matrix 3.15 Complete Solution of the State Equation 3.16 Summary 4 Laplace TransfOrm 4.1 Introduction 4.2 Definition of the Laplace TransfOrm 4.3 Derivation of Laplace Transforms of Simple Functions 4.4 LapIace TransfOrm Theorems 4.5 CAD Accuracy Checkst CADAC 4.6 Application of the Laplace Transform to DiffereptialEquations 4.7 Inverse TransfOrmation 4.8 Heaviside Partial-Fraction Expansion Theorems 4.9 MATLAB Partial-Fraction Example 4.10 Partial-Fraction Shortcuts 4.11 GraphicaI Interpretation of Partial-Fraction Coefficients 4.12 Frequency Response from the Pole-Zero Diagram 4.13 Location of Poles and Stability 4.14 Laplace TransfOrm of the Impulse Function 4.15 Second-Order System with Impulse Excitation 4.16 AdditionalMatrix Operations and ProPerties 4.17 SoIution of State Equati()n 4.18 Evaluation of the Transttr-Function Matrix 4.19 Summary 5 System Representation 5.1 Introduction 5.2 Block Diagrams 5.3 Determination of the OverallTransfer Function 5.4 Standard Block Diagram Terminology 5.5 Position ControlSystem 5.6 Simulation Diagrams 5.7 SignalFlow Graphs 5.8 State Transition SignalFlow Graph 5.9 ParallelState Diagrams from Transfer Functions 5.10 Diagonalizing the A Matrix 5.1l Use of State TransfOrmation fOr the State Equation Solution 5.12 Transforming a Matrix with Complex Eigenvalues 5.13 Transforming an A Matrix into Companion FOrm 5.14 Summary 6 Control-System Characteristics 6.l Introduction 6.2 Routh.s Stability Criterion 6.3 Mathematicaland PhysicalForms 6.4 Feedback System TyPes 6.5 Analysis of System Types 6.6 Example f TyPe 2 System 6.7 Steady-State Error Coefficients 6.8 CAD Accuracy Checkst CADAC 6.9 Use of Steady-State Ermr Coefficients 6.10 Nonunity-Feedback System 6.llSummary 7 Root Locus 7.lIntroduction 7.2 Plotting Roots of a Characteristic Equation 7.3 Qualitative Analysis of the Root Locus 7.4 Procedure Outline 7.5 OPen-Loop Transfer Function 7.6 Poles of the ControlRatio C(syR(s) 7.7 Application Qf the Magnitude and Angle Conditions 7.8 GeometricaI ProPerties (Construction Rules) 7.9 CAD Accuracy Checks (CADAC) 7.10 Examples 7.11 Example l:MATLAB Root Locus 7.12 PerfOrmance Characteristics 7.13 Transport Lag 7.14 Synthesis 7.15 Summary of Root-Locus Construction Rules fOr Negative Feedback 7.16 Summary 8 Frequency Response 8.l Introduction 8.2 Co1.reIation of the SinusoidaI and Time ResPOnses 8.3 Frequency-ResPOnse Curves 8.4 Bode Plots (Logarithmic Plots) 8.5 GeneralFrequency-Transfer-Function Relationships 8.6 Drawing the Bode Plots 8.7 Example of Drawing a Bode Plot 8.8 System TyPe and Gain as Related to Log Magnitude Curves 8.9 CAD Accuracy Check (CADAC) 8.10 ExperimentalDetermination of Transfer Functions 8.11 Direct Polar Plots 8.12 Summary: Direct Polar Plots 8.13 Nyquist.s Stability Criterion 8.14 Examples of Nyquist.s Criterion Using Direct Polar Plot 8.15 Nyquist.s Stability Criterion Applied to Systems Having DeadTime 8.16 Definitions of Phase Margin and Gain Margin and Their Relatonto stability 8.17 Stability Characteristics of the Log Magnitude and Phase Diagram 8.18 Stability from the Nichols Plot (Log Magnitude--Angle Diagrarn) 8.19 Sununary 9 Closed-Loop Tracking Performance Based on the Frequency ResPOnse 9.1 Introduction 9.2 Direct Polar Plot 9.3 Determination of M.and com fOr a Simple Second-Order System 9.4 Correlation of Sinusoidaland Time ResPOnses 9.5 Constant M(co) and a(to) Contours of C(jo,yR(jco) on theComplex Plane (Direct Plot) 9.6 Constant 1M and a Contours (Unity Feedback) in the InversePolar Plane 9.7 Gain Adjustment for a Desired M.of a Unity-Feedback System:Direct Polar Plot 9.8 Constant M and a Curves on the Log Magnitude--Angle Diagram(Nichols Chart) 9.9 Generation of MATLAB (1992 Student Version) Bode and NyquistPlots 9.10 Adjustment of Gain by Use of the Log Magnitude--Angle Diagram 9.11 Correlahon of Pole-Zero Diagrarn with Frequency and TimeResPOnses 9.12 sununary 10 Root-Locus Compensation: Design 10.1 Introduction to Design 10.2 Transient ResPOnse: Dominant Complex POles 10.3 AdditionalSignificant Poles 10.4 Root-tocus Design Considerations 10.5 Reshaping the Root Locus 10.6 CAD Accuracy Checks (CADAC) 10.7 IdealIntegralCascade ComPensation (PI ContrOller) 10.8 Cascade Lag ComPensation Design Using Passive Elements 10.9 IdealDerivative Cascade ComPensation (PD ContrOller) 10.10 Lead ComPensation Design Using Passive Elements 10.11 Generalbead-ComPensator Design 10.12 Lag-Lead Cascade ComPensation Design 10.13 Comparison of Cascade ComPensators 10.14 PID ContrOller 10.15 Introduction to Feedback ComPensation 10.16 Feedback Compensation: Design Procedures 10.17 Simplified Rate Feedback ComPensation: A Design Approach 10.18 Design of Rate Feedback 10.19 Design f Feedback of Second Derivative of Output 10.20 Results of Feedback ComPensation Design 10.21 Rate Feedback f Plants with Dominant Complex Poles 10.22 Summary 11 Frequency-Response Compensation Design 11.1 Introduction to Feedback ComPensation Design 11.2 Selection of a Cascade ComPensator 11.3 Cascade Lag ComPensator 11.4 Design Example f Cascade Lag Compensation 11.5 Lead Compensator 11.6 Design Example: Cascade Lead ComPensation 11.7 Lag-Lead ComPensator 11.8 Design Example f Cascade Lag-Lead ComPensation 11.9 Feedback Compensation Design Using Log Plots 11.10 Design Exarnple f Feedback Compensation (Log Plots) 11.11 Application Guidelines f Basic MinorLoop Feedback ComPensators 11.12 Summary 12 Control-Ratio Modeling 12.1 Introduction 12.2 Modeling a Desired Tracking ControlRatio. 12.3 Guillemin-TruxalDesign Procedure 12.4 Introduction to Disturbance Rejection. 12.5 A Second-Order Disturbance-Rejection Model 12.6 Disturbance-Rejection Design Princinles for SISO Systems 12.7 Disturbance-Rejection Design Example 12.8 Disturbance-Rejection Models 12.9 Summary 13 Design: Closed-Loop Pole-Zero Assignment(State-Variable Feedback) 13.l Introduction 13.2 Controllability and Observability 13.3 State Feedback for SISO Systems 13.4 State-Fecdback Design for SISO Systems Using the ContrOlCanonical(Phase-Vdriables) Form 13.5 State-Variable Feedback (PhysicalVariables) 13.6 GeneralProperties of State Feedback (Using Phase Variables) 13.7 State-Variable Feedback: Steady-State Ermr Analysis 13.8 Use of Steady-State Ermr Coefficients 13.9 State-Variable Feedback: All-Pole Plant 13.10 Plants with Complex Poles 13.11 ComPensator Containing a Zero 13.12 State.Variable Feedback: Pole-Zero Plant 13.13 Summary 14 Parameter Sensitivity and State Space Trajectories 14.1 Introduction 14.2 Sensitivity 14.3 Sensitivity Analysis 14.4 Parameter Sensitivity Examples 14.5 Inaccessible States 14.6 State-SpaceTrajectories - 14.7 Linearization (Jacobian Matrix) 14.8 Summary 15 DigitalControlSystems 15.1 Introduction 15.2 Sampling 15.3 IdealSampling 15.4 z-Transform Theorems 15.5 Synthesis in the z Domain (Direct Method) 15.6 The Inverse z Transform 15.7 Zero-Order Hold 15.8 Limitations 15.9 Tustin Transformation 15.10 Tustin Transformation ProPerties 15.11 Pseudo-Continuous-Tme (PCT) ControlSystem (DIG Method) 15.12 Analysis of a Basic (UncomPensated) System 15.13 Design of DigitalControlSystems 15.14 Direct (DIR) Design Technique 15.15 Lead Controller (ComPensator)f DIR Design Method 15.16 Lag and Lag-Lead Controllers f DIR Design Method 15.17 Digitization (DIG) Design Technique 15.18 Summary 16 Entire Eigenstructure Assignment for MultivariableSystems 16.1 Introduction 16.2 Effect of Eigenstructure on Time Response 16.3 Entire Eigenstructure Assignment 16.4 Examples of Entire Eigenstructure Assignment fOr Re.gulators 16.5 MATLAB Eigenvectors 16.6 UncontrolIable Systems 16.7 Tracking Systems 16.8 Tracking-System Design Example 16.9 MATLAB Example of Tracker Design in Sec.16.8 16.10 Summary 17 Design of Tracking Systems Using Output Feedback 17.1 Introduction 17.2 Output.Feedback Tracking System 17.3 Block Diagonalization 17.4 Analysis of Closed-Loop System Performance 17.5 Design Procedure for Regular Plants 17.6 Regular System Design Example 17.7 Irregular Plant Characteristics 17.8 Irregular System Performance 17.9 Design of the Measurement Matrix M 17.10 Irregular System Design ExaInple 17.11 Tracker Simulation 17.12 Summary 18 Quantitative Feedback Theory (QFT) Technique 18.1 Introduction 18.2 Frequency Responses with Parameter Variations 18.3 Introduction to the QFT Method (Single-Loop System) 18.4 Minimum-Phase System Performance SPecifications 18.5 Multiple-Inght Multiple-Output (MIMO) Uncertain Plants 18.6 Plant Templates of P(s), JP(jωi) 18.7 U-Contour 18.8 Tracking Bounds Lm BR(jω) on the NC 18.9 Disturbance Bounds BD(jωi)f Case l[d2(t) = D.u--1(t),d1(t) = 0] 18.10 Disturbance Bounds BD(jωi): Case 2 [d1(t) = D.u-- l(t),d2(t) = 0] 18.1lThe Composite Boundary B.(jωi) 18.12 ShaPing of 1.(jω) 18.13 Guidelines tbr Shaping 1.(jω) 18.14 Design of the Prefilter F(s) 18.15 Basic Design Procedure for a MISO System 18.16 Design Example l 18.17 Design Example 2 18.18 Template Generation for Unstable Plants 18.19 Summary Appendixes A Table of Laplace Transform Pairs B Interactive Computer Aided Design Programs for Digital and Continuous Control-System Analysis and Synthesis B.1 Introduction B.2 Overview of lCECAP-PC and TOTAL-PC B.3 Overview of MATLAB B.4 QFT CAD Packages B.5 ComputerAided Design Accuracy Checks (CADAC) B.6 Other Computer-Aided Design Packages Problems Answers to Selected Problems Index