注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)工業(yè)技術(shù)動(dòng)力工程力學(xué)和物理學(xué)中的無(wú)限維動(dòng)力系統(tǒng)影印版(第2版)

力學(xué)和物理學(xué)中的無(wú)限維動(dòng)力系統(tǒng)影印版(第2版)

力學(xué)和物理學(xué)中的無(wú)限維動(dòng)力系統(tǒng)影印版(第2版)

定 價(jià):¥100.00

作 者: Roger Temam
出版社: 北京世圖
叢編項(xiàng): Applied Mathematical Sciences
標(biāo) 簽: 暫缺

ISBN: 9787506247160 出版時(shí)間: 2000-06-01 包裝: 精裝
開本: 24開 頁(yè)數(shù): 648 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  Since publication of the first edition of this book in 1988, the study of dynamical systems of infinite dimension has been a very active area in pure and applied mathematics; new results include the study of the existence of attractors for a large number of systems in mathematical physics and mechanics; lower and upper estimates on the dimension of the attractors; approximation of attractors; inertial manifolds and their approximation. The study of multilevel numerical methods stemming from dynamical systems theory has also developed as a subject on its own. Finally, intermediate concepts between attractors and inertial manifolds have also been introduced, in particular the concept of inertial sets.本書為英文版。

作者簡(jiǎn)介

暫缺《力學(xué)和物理學(xué)中的無(wú)限維動(dòng)力系統(tǒng)影印版(第2版)》作者簡(jiǎn)介

圖書目錄

PrefacetotheSecondEdition
PrefacetotheFirstEdition
GENERALINTRODUCTION.
TheUser'sGuide
Introduction
1.MechanismandDescriptionofChaos.TheFinite-DimensionalCase
2.MechanismandDescriptionofChaos.TheInfinite-DimensionalCase
3.TheGlobalAttractor.ReductiontoFiniteDimension
4.RemarksontheComputationalAspect
5.TheUser'sGuide
CHAPTERI
GeneralResultsandConceptsonInvariantSetsandAttractors
Introduction
1.Semigroups,InvariantSets,andAttractors
1.1.SemigroupsofOperators
1.2.FunctionalInvariantSets
1.3.AbsorbingSetsandAttractors
1.4.ARemarkontheStabilityoftheAttractors
2.ExamplesinOrdinaryDifferentialEquations
2.1.ThePendulum
2.2.TheMineaSystem
2.3.TheLorenzModel
3.FractalInterpolationandAttractors
3.1.TheGeneralFramework
3.2.TheInterpolationProcess
3.3.ProofofTheorem3.1
CHAPTERII
ElementsofFunctionalAnalysis
Introduction
1.FunctionSpaces
1.1.DefinitionoftheSpaces.Notations
1.2.PropertiesofSobolevSpaces
1.3.OtherSobolevSpaces
1.4.FurtherPropertiesofSobolevSpaces
2.LinearOperators
2.1.BilinearFormsandLinearOperators
2.2."Concrete"ExamplesofLinearOperators
3.LinearEvolutionEquationsoftheFirstOrderinTime
3.1.Hypotheses
3.2.AResultofExistenceandUniqueness
3.3.RegularityResults
3.4.Time-DependentOperators
4.LinearEvolutionEquationsoftheSecondOrderinTime
4.1.TheEvolutionProblem
4.2.AnotherResult
4.3.Time-DependentOperators
CHAPTERIII
AttractorsoftheDissipativeEvolutionEquationoftheFirstOrder
inTime:Reaction-DiffusionEquations.FluidMechanicsand
PatternFormationEquations
introduction
1.Reaction-DiffusionEquations
1.1.EquationswithaPolynomialNonlinearity
1.2.EquationswithanInvariantRegion
2.Navier-StokesEquations(n=2)
2.1.TheEquationsandTheirMathematicalSetting
2.2.AbsorbingSetsandAttractors
2.3.ProofofTheorem2.1
3.OtherEquationsinFluidMechanics
3.1.AbstractEquation.GeneralResults
3.2.FluidDrivenbyItsBoundary
3.3.Magnetohydrodynamics(MHD)
3.4.GeophysicalFlows(FlowsonaManifold)
3.5.Thermohydraulics
4.SomePatternFormationEquations
4.1.TheKuramoto-SivashinskyEquation
4.2.TheCahn-HilliardEquation
5.SemilinearEquations
5.1.TheEquations.TheSemigroup
5.2.AbsorbingSetsandAttractors
5.3.ProofofTheorem5.2
6.BackwardUniqueness
6.1.AnAbstractResult
6.2.Applications
CHAPTERIV
AttractorsofDissipativeWaveEquations
Introduction
1.LinearEquations:SummaryandAdditionalResults
1.1.TheGeneralFramework
1.2.ExponentialDecay
1.3.BoundedSolutionsontheRealLine
2.TheSine-GordonEquation
2.1.TheEquationandItsMathematicalSetting
2.2.AbsorbingSetsandAttractors
2.3.OtherBoundaryConditions
3.ANonlinearWaveEquationofRelativisticQuantumMechanics
3.1.TheEquationandItsMathematicalSetting
3.2.AbsorbingSetsandAttractors
4.AnAbstractWaveEquation
4.1.TheAbstractEquation.TheGroupofOperators
4.2.AbsorbingSetsandAttractors
4.3.Examples
4.4.ProofofTheorem4.1(Sketch)
5.TheGinzburg-LandauEquation
5.1.TheEquationsandItsMathematicalSetting
5.2.AbsorbingSetsandAttractors
6.WeaklyDissipativeEquations.I.TheNonlinearSchr6dingerEquation
6.1.TheNonlinearSchr6dingerEquation
6.2.ExistenceandUniquenessofSolution.AbsorbingSets
6.3.DecompositionoftheSemigroup
6.4.ComparisonofzandZforLargeTimes
6.5.ApplicationtotheAttractor.TheMainResult
6.6.DeterminingModes
7.WeaklyDissipativeEquationsII.TheKorteweg-DeVriesEquation
7.1.TheEquationanditsMathematicalSetting
7.2.AbsorbingSetsandAttractors
7.3.RegularityoftheAttractor
7.4.ProofoftheResultsinSection7.1
7.5.ProofofProposition7.2
8.UnboundedCase:TheLackofCompactness
8.1.Preliminaries
8.2.TheGlobalAttractor
9.RegularityofAttractors
9.1.APreliminaryResult
9.2.ExampleofPartialRegularity
9.3.ExampleofRegularity
10.StabilityofAttractors
CHAPTERV
LyapunovExponentsandDimensionofAttractors
Introduction
1.LinearandMultilinearAlgebra
1.1.ExteriorProductofHilbertSpaces
1.2.MultilinearOperatorsandExteriorProducts
1.3.ImageofaBallbyaLinearOperator
2.LyapunovExponentsandLyapunovNumbers
2.1.DistortionofVolumesProducedbytheSemigroup
2.2.DefinitionoftheLyapunovExponentsandLyapunovNumbers
2.3.EvolutionoftheVolumeElementandItsExponentialDecay:
TheAbstractFramework
3.HausdorffandFractalDimensionsofAttractors
3.1.HausdorffandFractalDimensions
3.2.CoveringLemmas
3.3.TheMainResults
3.4.ApplicationtoEvolutionEquations
CHAPTERVI
ExplicitBoundsontheNumberofDegreesofFreedomandthe
DimensionofAttractorsofSomePhysicalSystems
Introduction
1.TheLorenzAttractor
2.Reaction-DiffusionEquations
2.1.EquationswithaPolynomialNonlinearity
2.2.EquationswithanInvariantRegion
3.Navier-StokesEquations(n=2)
3.1.GeneralBoundaryConditions
3.2.ImprovementsfortheSpace-PeriodicCase
4.OtherEquationsinFluidMechanics
4.1.TheLinearizedEquations(TheAbstractFramework)
4.2.FluidDrivenbyItsBoundary
4.3.Magnetohydrodynamics
4.4.FlowsonaManifold
4.5.Thermohydraulics
5.PatternFormationEquations
5.1.TheKuramoto-SivashinskyEquation
5.2.TheCahn-HilliardEquations
6.DissipativeWaveEquations
6.1.TheLinearizedEquation
6.2.DimensionoftheAttractor
6.3.Sine-GordonEquations
6.4.SomeLemmas
7.TheGinzburg-LandauEquation
7.1.TheLinearizedEquation
7.2.DimensionoftheAttractor
8.DifferentiabilityoftheSemigroup
CHAPTERVII
Non-Well-PosedProblems,UnstableManifolds,Lyapunov
Functions,andLowerBoundsonDimensions
Introduction
PARTA:NoN-WELL-POSEDPROBLEMS
1.DissipativityandWellPosedness
1.1.GeneralDefinitions
1.2.TheClassofProblemsStudied
1.3.TheMainResult
2.EstimateofDimensionforNon-Well-PosedProblems:
ExamplesinFluidDynamics
2.1.TheEquationsandTheirLinearization
2.2.EstimateoftheDimensionofX
2.3.TheThree-DimensionalNavier-StokesEquations
PARTB:UNSTABLEMANIFOLDS,LYAPUNOVFUNCTIONS,ANDLOWER
BOUNDSONDIMENSIONS
3.StableandUnstableManifolds
3.1.StructureofaMappingintheNeighborhoodofaFixedPoint
3.2.ApplicationtoAttractors
3.3.UnstableManifoldoraCompactInvariantSet
4.TheAttractorofaSemigroupwithaLyapunovFunction
4.1.AGeneralResult
4.2.AdditionalResults
4.3.Examples
5.LowerBoundsonDimensionsofAttractors:AnExample
CHAPTERVIII
TheConeandSqueezingProperties.InertialManifolds
Introduction
1.TheConeProperty
1.1.TheConeProperty
1.2.Generalizations
1.3.TheSqueezingProperty
2.ConstructionofanInertialManifold:DescriptionoftheMethod
2.1.InertialManifolds:TheMethodofConstruction
2.2.TheInitialandPreparedEquations
2.3.TheMapping
3.ExistenceofanInertialManifold
3.1.TheResultofExistence
3.2.FirstPropertiesof
3.3.UtilizationoftheConeProperty
3.4.ProofofTheorem3.1(End)
3.5.AnotherFormofTheorem3.1
4.Examples
4.1.Example1:TheKuramoto-SivashinskyEquation
4.2.Example2:ApproximateInertialManifoldsforthe
Navier-StokesEquations
4.3.Example3:Reaction-DiffusionEquations
4.4.Example4:TheGinzburg-LandauEquation
5.ApproximationandStabilityoftheInertialManifoldwith
RespecttoPerturbations
CHAPTERIX
InertialManifoldsandSlowManifolds.TheNon-Self-AdjointCase
Introduction
1.TheFunctionalSetting
1.1.NotationsandHypotheses
1.2.ConstructionoftheInertialManifold
2.TheMainResult(LipschitzCase)
2.1.ExistenceofInertialManifolds
2.2.Propertiesof
2.3.SmoothnessPropertyof
2.4.ProofofTheorem2.1
3.ComplementsandApplications
3.1.TheLocallyLipschitzCase
3.2.DimensionoftheInertialManifold
4.InertialManifoldsandSlowManifolds
4.1.TheMotivation
4.2.TheAbstractEquation
4.3.AnEquationofNavier-StokesType
CHAPTERX
ApproximationofAttractorsandInertialManifolds.
ConvergentFamiliesofApproximateInertialManifolds
Introduction
1.ConstructionoftheManifolds
1.1.ApproximationoftheDifferentialEquation
1.2.TheApproximateManifolds
2.ApproximationofAttractors
2,1.Propertiesof
2.2.DistancetotheAttractor
2.3.TheMainResult
3.ConvergentFamiliesofApproximateInertialManifolds
3.1.Propertiesof
3.2.DistancetotheExactInertialManifold
3.3.ConvergencetotheExactInertialManifold
APPENDIX
CollectiveSobolevInequalities
Introduction
1.NotationsandHypotheses
1.1.TheOperator
1.2.TheSchrodinger-TypeOperators
2.SpectralEstimatesforSchrodinger-TypeOperators
2.1.TheBirman-SchwingerInequality
2.2.TheSpectralEstimate
3.GeneralizationoftheSobolev-Lieb-ThirringInequality(I)
4.GeneralizationoftheSobolev-Lieb-ThirringInequality(II)
4.1.TheSpace-PeriodicCase
4.2.TheGeneralCase
4.3.ProofofTheorem4.1
5.Examples
Bibliography
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)