注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)生物數(shù)學(xué)影印版(第2版)

生物數(shù)學(xué)影印版(第2版)

生物數(shù)學(xué)影印版(第2版)

定 價(jià):¥120.00

作 者: J.D.Murray
出版社: 北京世圖
叢編項(xiàng): Biomathematics Texts
標(biāo) 簽: 暫缺

購(gòu)買(mǎi)這本書(shū)可以去


ISBN: 9787506237376 出版時(shí)間: 2004-06-01 包裝: 膠版紙
開(kāi)本: 大32 頁(yè)數(shù): 767 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  Mathematics has always benefited from its involvement with developing sciences.Each successive interaction revitalises and enhances the field. Biomedical science is clearly the premier science of the foreseeable future. For the continuing health of their subject mathematicians must become involved with biology. With the example of how mathematics has benefited from and influenced physics, it is clear that if mathematicians do not become involved in the biosciences they will simply not be a part of what are likely to be the most important and exciting scientific discoveries of all time.本書(shū)為英文版。

作者簡(jiǎn)介

暫缺《生物數(shù)學(xué)影印版(第2版)》作者簡(jiǎn)介

圖書(shū)目錄

1.ContinuousPopulationModelsforSingleSpecies
1.1ContinuousGrowthModels
1.2InsectOutbreakModel:SpruceBudworm
1.3DelayModels
1.4LinearAnalysisofDelayPopulationModels:PeriodicSolutions
1.5DelayModelsinPhysiology:DynamicDiseases
1.6HarvestingaSingleNaturalPopulation
*1.7PopulationModelwithAgeDistribution
Exercises
2.DiscretePopulationModelsforaSingleSpecies
2.1Introduction:SimpleModels
2.2Cobwebbing:AGraphicalProcedureofSolution
2.3DiscreteLogisticModel:Chaos
2.4Stability,PeriodicSolutionsandBifurcations
2.5DiscreteDelayModels
2.6FisheryManagementModel
2.7EcologicalImplicationsandCaveats
Exercises
3.ContinuousModelsforInteractingPopulations
3.1Predator-PreyModels:Lotka-VolterraSystems
3.2ComplexityandStability
3.3RealisticPredator-PreyModels
3.4AnalysisofaPredator-PreyModelwithLimitCyclePeriodic
Behaviour:ParameterDomainsofStability
3.5CompetitionModels:PrincipleofCompetitiveExclusion
3.6MutualismorSymbiosis
3.7GeneralModelsandSomeGeneralandCautionaryRemarks
3.8ThresholdPhenomena
Exercises
4.DiscreteGrowthModelsforInteractingPopulations
4.1Predator-PreyModels:DetailedAnalysis
*4.2SynchronizedInsectEmergence:13YearLocusts
4.3BiologicalPestControl:GeneralRemarks
Exercises
5.ReactionKinetics
5.1EnzymeKinetics:BasicEnzymeReaction
5.2Michaelis-MentenTheory:DetailedAnalysisandthe
Pseudo-SteadyStateHypothesis
5.3CooperativePhenomena
5.4Autocatalysis,ActivationandInhibition
5.5MultipleSteadyStates,MushroomsandIsolas
Exercises
6.BiologicalOscillatorsandSwitches
6.1Motivation,HistoryandBackground
6.2FeedbackControlMechanisms
6.3OscillationsandSwitchesInvolvingTwoorMoreSpecies:
GeneralQualitativeResults
6.4SimpleTwo-SpeciesOscillators:ParameterDomain
DeterminationforOscillations
6.5Hodgkin-HuxleyTheoryofNerveMembranes:
FitzHugh-NagumoModel
6.6ModellingtheControlofTestosteroneSecretion
Exercises
7.Belousov-ZhabotinskiiReaction
7.1BelousovReactionandtheField-Noyes(FN)Model
7.2LinearStabilityAnalysisoftheFNModelandExistence
ofLimitCycleSolutions
7.3Non-localStabilityoftheFNModel
7.4RelaxationOscillators:Approximationforthe
Belousov-ZhabotinskiiReaction
7.5AnalysisofaRelaxationModelforLimitCycleOscillations
intheBelousov-ZhabotinskiiReaction
Exercises
8.PerturbedandCoupledOscillatorsandBlackHoles
8.1PhaseResettinginOscillators
8.2PhaseResettingCurves
8.3BlackHoles
8.4BlackHolesinRealBiologicalOscillators
8.5CoupledOscillators:MotivationandModelSystem
*8.6SingularPerturbationAnalysis:PreliminaryTransformation
*8.7SingularPerturbationAnalysis:TransformedSystem
*8.8SingularperturbationAnalysis:Two-TimeExpansion
*8.9AnalysisofthePhaseShiftEquationandApplication
toCoupledBelousov-ZhabotinskiiReactions
Exercises
9.ReactionDiffusion,ChemotaxisandNon-localMechanisms
9.1SimpleRandomWalkDerivationoftheDiffusionEquation
9.2ReactionDiffusionEquations
9.3ModelsforInsectDispersal
9.4Chemotaxis
*9.5Non-localEffectsandLongRangeDiffusion
*9.6CellPotentialandEnergyApproachtoDiffusion
Exercises
10.OscillatorGeneratedWavePhenomenaandCentralPattern
Generators
10.1KinematicWavesintheBelousov-ZhabotinskiiReaction
10.2CentralPatternGenerator:ExperimentalFactsinthe
SwimmingofFish
*10.3MathematicalModelfortheCentralPatternGenerator
*10.4AnalysisofthePhase-CoupledModelSystem
Exercises
11.BiologicalWaves:SingleSpeciesModels
11.1BackgroundandtheTravellingWaveForm
11.2FisherEquationandPropagatingWaveSolutions
11.3AsymptoticSolutionandStabilityofWavefrontSolutions
oftheFisherEquation
11.4Density-DependentDiffusionReactionDiffusionModels
andSomeExactSolutions
11.5WavesinModelswithMulti-SteadyStateKinetics:
TheSpreadandControlofanInsectPopulation
11.6CalciumWavesonAmphibianEggs:ActivationWaves
onMedakaEggs
Exercises
12.BiologicalWaves:Multi-speciesReactionDiffusionModels
12.1IntuitiveExpectations
12.2WavesofPursuitandEvasioninPredator-PreySystems
12.3TravellingFrontsintheBelousov-ZhabotinskiiReaction
12.4WavesinExcitableMedia
12.5TravellingWaveTrainsinReactionDiffusionSystems
withOscillatoryKinetics
*12.6LinearStabilityofWaveTrainSolutionsof-Systems
12.7SpiralWaves
*12.8SpiralWaveSolutionsof-ReactionDiffusionSystems
Exercises
*13.TravellingWavesinReactionDiffusionSystemswith
WeakDiffusion:AnalyticalTechniquesandResults
*13.1ReactionDiffusionSystemwithLimitCycleKineticsand
WeakDiffusion:ModelandTransformedSystem
*13.2SingularPerturbationAnalysis:ThePhaseSatisfies
Burgers'Equation
*13.3TravellingWavetrainSolutionsforReactionDiffusionSystems
withLimitCycleKineticsandWeakDiffusion:Comparison
withExperiment
14.SpatialPatternFormationwithReaction/PopulationInteraction
DiffusionMechanisms
14.1RoleofPatterninDevelopmentalBiology
14.2ReactionDiffusion(Turing)Mechanisms
14.3LinearStabilityAnalysisandEvolutionofSpatialPattern:
GeneralConditionsforDiffusion-DrivenInstability
14.4DetailedAnalysisofPatternInitiationinaReactionDiffusion
Mechanism
14.5DispersionRelation,TuringSpace,ScaleandGeometryEffects
inPatternFormationinMorphogeneticModels
14.6ModeSelectionandtheDispersionRelation
14.7PatternGenerationwithSingleSpeciesModels:
SpatialHeterogeneitywiththeSpruceBudwormModel
14.8SpatialPatternsinScalarPopulationInteraction-Reaction
DiffusionEquationswithConvection:EcologicalControl
Strategies
*14.9NonexistenceofSpatialPatternsinReactionDiffusion
Systems:GeneralandParticularResults
Exercises
15.AnimalCoatPatternsandOtherPracticalApplications
ofReactionDiffusionMechanisms
15.1MammalianCoatPatterns-'HowtheLeopardGotItsSpots'
15.2APatternFormationMechanismforButterflyWingPatterns
15.3ModellingHairPatternsinaWhorlinAcetabularia
16.NeuralModelsofPatternFormation
16.1SpatialPatterninginNeuralFiringwithaSimple
Activation-InhibitionModel
16.2AMechanismforStripeFormationintheVisualCortex
16.3AModelfortheBrainMechanismUnderlyingVisual
HallucinationPatterns
16.4NeuralActivityModelforShellPatterns
Exercises
17.MechanicalModelsforGeneratingPatternandForm
inDevelopment
17.1IntroductionandBackgroundBiology
17.2MechanicalModelforMesenchymalMorphogenesis
17.3LinearAnalysis,DispersionRelationandPatternFormation
Potential
17.4SimpleMechanicalModelsWhichGenerateSpatialPatterns
withComplexDispersionRelations
17.5PeriodicPatternsofFeatherGerms
17.6CartilageCondensationsinLimbMorphogenesis
17.7MechanochemicalModelfortheEpidermis
17.8TravellingWaveSolutionsoftheCytogelModel
17.9FormationofMicrovilli
17.10OtherApplicationsofMechanochemicalModels
Exercises
18.EvolutionandDevelopmentalProgrammes
18.1EvolutionandMorphogenesis
18.2EvolutionandMorphogeneticRulesinCartilageFormation
intheVertebrateLimb
18.3DevelopmentalConstraints,MorphogeneticRulesand
theConsequencesforEvolution
19.EpidemicModelsandtheDynamicsofInfectiousDiseases
19.1SimpleEpidemicModelsandPracticalApplications
19.2ModellingVenerealDiseases
19.3Multi-groupModelforGonorrheaandItsControl
19.4AIDS:ModellingtheTransmissionDynamicsoftheHuman
ImmunodeficiencyVirus(HIV)
19.5ModellingthePopulationDynamicsofAcquiredImmunity
toParasiteInfection
*19.6AgeDependentEpidemicModelandThresholdCriterion
19.7SimpleDrugUseEpidemicModelandThresholdAnalysis
Exercises
20.GeographicSpreadofEpidemics
20.1SimpleModelfortheSpatialSpreadofanEpidemic
20.2SpreadoftheBlackDeathinEurope1347-1350
20.3TheSpatialSpreadofRabiesAmongFoxesI:Background
andSimpleModel
20.4TheSpatialSpreadofRabiesAmongFoxesII:ThreeSpecies
(SIR)Model
20.5ControlStrategyBasedonWavePropagationintoa
Non-epidemicRegion:EstimateofWidthofaRabiesBarrier
20.6Two-DimensionalEpizooticFrontsandEffectsofVariable
FoxDensities:QuantitativePredictionsforaRabiesOutbreak
inEngland
Exercises
Appendices
1.PhasePlaneAnalysis
2.Routh-HurwitzConditions,JuryConditions,Descartes'Rule
ofSignsandExactSolutionsofaCubic
3.HopfBifurcationTheoremandLimitCycles
4.GeneralResultsfortheLaplacianOperatorinBounded
Domains
Bibliography
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)