注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)緊李群的表示(影印版)

緊李群的表示(影印版)

緊李群的表示(影印版)

定 價:¥54.00

作 者: Theodor Brocker,Tammo tom Dieck
出版社: 北京世圖
叢編項(xiàng): Graduate Texts in Mathematics
標(biāo) 簽: 群與組合編碼

ISBN: 9787506201278 出版時間: 2004-06-01 包裝: 膠版紙
開本: 24開 頁數(shù): 313 字?jǐn)?shù):  

內(nèi)容簡介

  This book is based on several courses given by the authors since 1966. It introduces the reader to the representation theory of compact Lie groups. We have chosen a geometrical and analytical approach since we feel that this is the easiest way to motivate and establish the theory and to indicate relations to other branches of mathematics. Lie algebras, though mentioned occasionally, are not used in an essential way. The material as well as its presentation are classical; one might say that the foundations were known to Hermann Weyl at least 50 years ago.本書為英文版。

作者簡介

暫缺《緊李群的表示(影印版)》作者簡介

圖書目錄

CHAPTERI
LieGroupsandLieAlgebras
1.TheConceptofaLieGroupandtheClassicalExamples
2.Left-InvariantVectorFieldsandOne-ParameterGroups
3.TheExponentialMap
4.HomogeneousSpacesandQuotientGroups
5.InvariantIntegration
6.CliffordAlgebrasandSpinorGroups
CHAPTERII
ElementaryRepresentationTheory
1.Representations
2.SemisimpleModules
3.LinearAlgebraandRepresentations
4.CharactersandOrthogonalityRelations
5.RepresentationsofSU(2),SO(3),U(2),andO(3).
6.RealandQuaternionicRepresentations
7.TheCharacterRingandtheRepresentationRing
8.RepresentationsofAbelianGroups
9.RepresentationsofLieAlgebras
10.TheLieAlgebrasl(2,C)
CHAPTERIII
RepresentativeFunctions
1.AlgebrasofRepresentativeFunctions
2.SomeAnalysisonCompactGroups
3.TheTheoremofPeterandWeyl
4.ApplicationsoftheTheoremofPeterandWeyl
5.GeneralizationsoftheTheoremofPeterandWeyl
6.InducedRepresentations
7.Tannaka-KreinDuality
8.TheComplexificationofCompactLieGroups
CHAPTERIV
TheMaximalTorusofaCompactLieGroup
1.MaximalTori
2.ConsequencesoftheConjugationTheorem
3.TheMaximalToriandWeylGroupsoftheClassicalGroups
4.CartanSubgroupsofNonconnectedCompactGroups
CHAPTERV
RootSystems
1.TheAdjointRepresentationandGroupsofRank1
2.RootsandWeylChambers
3.RootSystems
4.BasesandWeylChambers
5.DynkinDiagrams
6.TheRootsoftheClassicalGroups
7.TheFundamentalGroup,theCenterandtheStiefetDiagram
8.TheStructureoftheCompactGroups
CHAPTERVI
IrreducibleCharactersandWeights
1.TheWeylCharacterFormula
2.TheDominantWeightandtheStructureoftheRepresentationRing
3.TheMultiplicitiesoftheWeightsofanIrreducibleRepresentation
4.RepresentationsofRealorQuaternionicType
5.RepresentationsoftheClassicalGroups
6.RepresentationsoftheSpinorGroups
7.RepresentationsoftheOrthogonalGroups
Bibliography
SymbolIndex
SubjectIndex

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號