注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術自然科學物理學經(jīng)典數(shù)學物理方程

經(jīng)典數(shù)學物理方程

經(jīng)典數(shù)學物理方程

定 價:¥26.00

作 者: 謝鴻政
出版社: 科學出版社
叢編項: 21世紀高等院校教材
標 簽: 數(shù)學

購買這本書可以去


ISBN: 9787030168320 出版時間: 2006-07-01 包裝: 平裝
開本: B5 頁數(shù): 254 字數(shù):  

內(nèi)容簡介

  本書是數(shù)學物理方程課程的英文教材,共10章,內(nèi)容包括:緒論、數(shù)學模型與定解問題、二階線性偏微分方程的分類和化簡、特征線積分法、分離變量法、本征值問題與特殊函數(shù)、高維邊值問題、積分變換法、調(diào)和函數(shù)的基本性質(zhì)、格林函數(shù)及其應用等.本書可作為高等學校理工科(非數(shù)學專業(yè))本科生和研究生的公共專業(yè)或技術基礎課英文教材,也可供科技工作者參考。

作者簡介

暫缺《經(jīng)典數(shù)學物理方程》作者簡介

圖書目錄

Chapter 1 Introduction
1.1 Equations of nmthematieal physics
1.2 Basic concept and definition
1.3 Linear operator
Exercises
Chapter 2 Mathematical models and problems for defining solutions
2.1 Typical equations
2.2 String oscillation
2.3 Membrane oscillation
2.4 Heat conduction in solid
2.5 Gravitation potential
2.6 The conditions and problems for defining solutions
2.7 Principle of superposition
Chapter 3 Classification and simplification for linear partial
differential equations of second order
3.1 Linear second order partial differential equations with two variables
3.2 Simplification and standard forms
3.3 Examples
Exercises
Chapter 4 Integral method on characteristics
4.1 D'Alembert formula of Cauchy problem for string oscillation'
4.2 Small oscillations of semi-infinite and finite strings with rigidly
fixed or free ends, method of prolongation
4.3 Three-dimensional wave equation
4.4 The method for descending dimension
4.5 Cauchy problem for non-homogeneous wave equation
4.6 Integral method on characteristics for second order hyperbolic
equations with two variables
Exercises
Chapter 5 The method of separating variables on finite region
5.1 Separation of variables
5.2 The process by separation of variables for solving mixed problel
on string oscillation
5.3 The application of the method on separating variables
5.4 Non-homogeneous problems
5.5 Uniqueness of the solutions for two mixed problems
Exercises
Chapter 6 Eigenvalue problems and special functions
6.1 Sturm-Liouville problem
6.2 Eigenfunctions
6.3 The boundary value problem of ordinary differential equation
and Green function
6.4 The construction of Green function
6.5 Eigenvalue problem and Green function
6.6 Bessel function
6.7 Singular Sturm-Liouville problem
6.8 Legendre function
Exercises
Chapter 7 Multidimensional boundary value problems
7,1 Dirichlet problem in cube
7.2 Dirichlet problem in cylindrical body
7.3 Boundary value problems in a sphere
7.4 Membrane oscillation on rectangular region
7.5 Heat conduction on rectangular plate
7.6 Wave in three-dimensional cube
7.7 Heat conduction in cube
7.8 The problem on hydrogen atom
7.9 Forced vibration on membrane
Exercises
Chapter 8 Integral transformations
8.1 Fourier integral transformation
8.2 The properties of Fourier transformation
8.3 Application of Fourier integral transformation
8.4 Laplace integral transformation
8.5 Application of Laplace integral transformation
Exercises
Chapter 9 Basic properties of harmonic functions
9.1 Convex, linear, and concave functions in R1
9.2 Superhamonic, harmonic, and subharmonic functions in multidimen-
sional regions
9.3 Hopf lemma and strong maximum principle
9.4 Green formulas, uniqueness theorems
9.5 Integral identity, mean value theorem, inverse mean value theorem
Chapter 10 Green function and their application to PDEs
10.1 Definition and main properties concerning Laplace
operator
10.2 The method of superposition of sources and sinks
10.3 Poisson integral
Supplement
Exercises
Selected answers for exercises
Appendix A
Appendix B
Appendix C

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號