注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)復(fù)分析可視化方法(英文版)

復(fù)分析可視化方法(英文版)

復(fù)分析可視化方法(英文版)

定 價:¥79.00

作 者: (美)尼達(dá)姆 著
出版社: 人民郵電出版社
叢編項:
標(biāo) 簽: 計算機(jī)

ISBN: 9787115155160 出版時間: 2007-02-01 包裝: 膠版紙
開本: 16開 頁數(shù): 0頁 字?jǐn)?shù):  

內(nèi)容簡介

  本書是復(fù)分析領(lǐng)域近年來較有影響的一本著作。作者用豐富的圖例展示各種概念、定理和證明思路,十分便于讀者理解,充分揭示了復(fù)分析的數(shù)學(xué)之美。書中講述的內(nèi)容有幾何、復(fù)變函數(shù)變換、默比烏斯變換、微分、非歐幾何、復(fù)積分、柯西公式、向量場、復(fù)積分、調(diào)和函數(shù)等。.本書可作為大學(xué)本科、研究生的復(fù)分析課程教材或參考書。.“……總的說來,本書確實體現(xiàn)了近幾十年數(shù)學(xué)教材的一個發(fā)展趨勢。把最新的成就,用淺顯的方法教給低年級學(xué)生?!薄R民友(著名數(shù)學(xué)家,原武漢大學(xué)校長).“《復(fù)分析:可視化方法》對我來說首先是一個欣喜,隨后便成為深得我心的一本書。Tristan Needham 運(yùn)用創(chuàng)新、獨(dú)特的幾何觀點,揭示復(fù)分析之美中許多令人吃驚的、未被人們認(rèn)識到的方面?!薄猂oger Penrose(英國大物理學(xué)家).“如果你一年之內(nèi)只能買一本數(shù)學(xué)書的話,那就買這一本吧?!薄狹athematical Gazette(數(shù)學(xué)公報).本書是復(fù)分析領(lǐng)域的一部名著,開創(chuàng)了數(shù)學(xué)領(lǐng)域的可視化潮流,自首次出版以來,已重印了十多次,深受世界讀者好評。作者用真正不同尋常和獨(dú)具創(chuàng)造性的視角來闡述復(fù)分析這一經(jīng)典學(xué)科,通過大量的圖示使原本比較抽象的數(shù)學(xué)概念,變得直觀易懂,讀者在透徹理解理論的同時,還能充分領(lǐng)略數(shù)學(xué)之美。.Tristan Needham舊金山大學(xué)數(shù)學(xué)系教授,理學(xué)院副院長。 牛津大學(xué)博士,導(dǎo)師為Roger Penrose(與霍金齊名的英國物理學(xué)家)。 因本書被美國數(shù)學(xué)會授予Carl B. Allendoerfer獎。他的研究領(lǐng)域包括幾何、復(fù)分析、數(shù)學(xué)史、廣義相對論。...

作者簡介

  Tristan Needham,舊金山大學(xué)教授系教授,理學(xué)院副院長。牛津大學(xué)博士,導(dǎo)師為Roger Penrose(與霍金齊名的英國物理學(xué)家)。因本書被美國數(shù)學(xué)會授予Carl B.Allendoerfer獎。他的研究領(lǐng)域包括幾何、復(fù)分析、數(shù)學(xué)史、廣義相對論。

圖書目錄

1 Geometry and CompleX ArIthmetIc
?、? IntroductIon 
?、? Euler's Formula 
?、? Some ApplIcatIons 
 Ⅳ TransformatIons and EuclIdean Geometry* 
?、? EXercIses 
2 CompleX FunctIons as TransformatIons 
Ⅰ IntroductIon 
 Ⅱ PolynomIals 
?、? Power SerIes 
 Ⅳ The EXponentIal FunctIon 
?、? CosIne and SIne 
 Ⅵ MultIfunctIons 
?、鳌he LogarIthm FunctIon 
 Ⅷ AVeragIng oVer CIrcles* 
?、? EXercIses 
3 M?bIus TransformatIons and InVersIon 
?、? IntroductIon 
 Ⅱ InVersIon 
?、? Three Illustrative ApplIcatIons of InVersIon 
 Ⅳ The RIemann Sphere 
?、? M?bIus TransformatIons: BasIc Results 
 Ⅵ M?bIus TransformatIons as MatrIces* 
?、鳌isualIzatIon and ClassIfIcatIon*
?、ecomposItIon Into 2 or 4 ReflectIons* 
?、? AutomorphIsms of the UnIt DIsc* 
?、? EXercIses 
4 DIfferentIatIon: The AmplItwIst Concept 
?、? IntroductIon 
?、? A PuzzlIng Phenomenon 
?、? Local DescrIptIon of MappIngs In the Plane 
 Ⅳ The CompleX Derivative as AmplItwIst 
?、? Some SImple EXamples 
?、? Conformal = AnalytIc 
 Ⅶ CrItIcal PoInts 
?、he Cauchy-RIemann EquatIons 
 Ⅸ EXercIses 
5 Further Geometry of DIfferentIatIon
?、? Cauchy-RIemann ReVealed 
 Ⅱ An IntImatIon of RIgIdIty 
?、? Visual DIfferentIatIon of log(z) 
?、? Rules of DIfferentIatIon 
 Ⅴ PolynomIals, Power SerIes, and RatIonal Func-tIons 
?、? Visual DIfferentIatIon of the Power FunctIon 
 Ⅶ Visual DIfferentIatIon of eXp(z) 231
?、eometrIc SolutIon of E'= E  
?、? An ApplIcatIon of HIgher Derivatives: CurVa-ture* 
?、? CelestIal MechanIcs* 
?、? AnalytIc ContInuatIon* 
?、XercIses 
6 Non-EuclIdean Geometry* 
?、? IntroductIon 
 Ⅱ SpherIcal Geometry 
?、? HyperbolIc Geometry 
 Ⅳ EXercIses 
7 WIndIng Numbers and Topology
?、瘛IndIng Number
 Ⅱ Hopf's Degree Theorem 
?、? PolynomIals and the Argument PrIncIple 
 Ⅳ A TopologIcal Argument PrIncIple* 
?、? Rouché's Theorem 
?、? MaXIma and MInIma 
?、鳌he Schwarz-PIck Lemma* 
 Ⅷ The GeneralIzed Argument PrIncIple 
?、? EXercIses 
8 CompleX IntegratIon: Cauchy's Theorem 
 ⅡntroductIon 
?、? The Real Integral 
?、? The CompleX Integral 
?、? CompleX InVersIon 
?、? ConjugatIon 
?、? Power FunctIons 
?、鳌he EXponentIal MappIng 
?、he Fundamental Theorem 
?、? ParametrIc EValuatIon 
?、? Cauchy's Theorem 
?、? The General Cauchy Theorem 
 Ⅻ The General Formula of Contour IntegratIon
?、XercIses 
9 Cauchy's Formula and Its ApplIcatIons 
?、? Cauchy's Formula 
 Ⅱ InfInIte DIfferentIabIlIty and Taylor SerIes 
?、? Calculus of ResIdues 
?、? Annular Laurent SerIes 
?、? EXercIses 
10 Vector FIelds: PhysIcs and Topology 
?、? Vector FIelds 
?、? WIndIng Numbers and Vector FIelds* 
 Ⅲ Flows on Closed Surfaces* 
?、? EXercIses 
11 Vector FIelds and CompleX IntegratIon 
 Ⅰ FluX and Work 
?、? CompleX IntegratIon In Terms of Vector FIelds
?、? The CompleX PotentIal 
?、? EXercIses 
12 Flows and HarmonIc FunctIons 
?、? HarmonIc Duals 
?、? Conformal I nVarIance 
?、? A Powerful ComputatIonal Tool 
?、? The CompleX CurVature ReVIsIted* 
?、? Flow Around an Obstacle 
?、? The PhysIcs of RIemann's MappIng Theorem
 Ⅶ Dirichlet's Problem 
?、xercIses 
References 
IndeX

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號