注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)遞歸可枚舉集和圖靈度:可計(jì)算函數(shù)與(影印版)

遞歸可枚舉集和圖靈度:可計(jì)算函數(shù)與(影印版)

遞歸可枚舉集和圖靈度:可計(jì)算函數(shù)與(影印版)

定 價:¥78.00

作 者: (美)索爾
出版社: 科學(xué)出版社
叢編項(xiàng): 國外數(shù)學(xué)名著系列
標(biāo) 簽: 數(shù)學(xué)基礎(chǔ)

ISBN: 9787030182951 出版時間: 2007-01-01 包裝: 精裝
開本: 16 頁數(shù): 437 字?jǐn)?shù):  

內(nèi)容簡介

  本書為英文影印版。

作者簡介

暫缺《遞歸可枚舉集和圖靈度:可計(jì)算函數(shù)與(影印版)》作者簡介

圖書目錄

Introduction
Part A. The Fundamental Concepts of Recursion Theory
 Chapter Ⅰ. Recursive Functions
  1. An Informal Description
  2. Formal Definitions of Computable Functions
   2.1. Primitive Recursive Functions
   2.2. Diagonalization and Partial Recursive Functions
   2.3. Turing Computable Functions
  3. The Basic Results
  4. Recursively Enumerable Sets and Unsolvable Problems
  5. Recursive Permutations and Myhill's Isomorphism Theorem
 Chapter Ⅱ. Fundamentals of Recursively Enumerable Sets and the Recursion Theorem
  1. Equivalent Definitions of Recursively Enumerable Sets andTheir Basic Properties
  2. Uniformity and Indices for Recursive and Finite Sets
  3. The Recursion Theorem
  4. Complete Sets, Productive Sets, and Creative Sets
 Chapter Ⅲ. Turing Reducibility and the Jump Operator
  1. Definitions of Relative Computability
  2. Turing Degrees and the Jump Operator
  3. The Modulus Lemma and Limit Lemma
 Chapter Ⅳ. The Arithmetical Hierarchy
  1. Computing Levels in the Arithmetical Hierarchy
  2. Post's Theorem and the Hierarchy Theorem
  3. En-Complete Sets
  4. The Relativized Arithmetical Hierarchy and High and Low Degrees
Part B. Post's Problem, Oracle Constructions and the Finite Injury Priority Method
 Chapter Ⅴ. Simple Sets and Post's Problem
  1. Immune Sets, Simple Sets and Post's Construction
  2. Hypersimple Sets and Majorizing Functions
  3. The Permitting Method
  4. Effectively Simple Sets Are Complete
  5. A Completeness Criterion for R.E. Sets
 Chapter Ⅵ. Oracle Constructions of Non-R.E. Degrees
  1. A Pair of Incomparable Degrees Below 0'
  2. Avoiding Cones of Degrees
  3. Inverting the Jump
  4. Upper and Lower Bounds for Degrees
  5.* Minimal Degrees
 Chapter Ⅶ. The Finite Injury Priority Method
  1. Low Simple Sets
  2. The Original Friedberg-Muchnik Theorem
  3. SplittingTheorems
Part C. Infinitary Methods for Constructing R.E. Sets and Degrees
 Chapter Ⅷ.The Infinite Injury Priority Method
  1. The Obstacles in Infinite Injury and the Thickness Lemma
  2. The Injury and Window Lemmas and the Strong Thickness Lemma
  3. TheJump Theorem
  4. The Density Theorem and the Sacks Coding Strategy
  5.*The Pinball Machine Model for Infinite Injury
 Chapter Ⅸ. The Minimal Pair Method and Embedding Lattices into the R.E. Degrees
  1. Minimal Pairs and Embedding the Diamond Lattice
  2.* Embedding DistributiveLattices
  3. The Non-Diamond Theorem
  4.* Nonbranching Degrees
  5.*Noncappable Degrees
 Chapter Ⅹ. The Lattice of R.E. Sets Under Inclusion
……
Part D. Advanced Topics and Current Research Areas in the R.E.Degrees and the Lattice
References
Notation Index
SubjectIndex

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號