注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)概率論基礎(chǔ)教程(英文版·第7版)

概率論基礎(chǔ)教程(英文版·第7版)

概率論基礎(chǔ)教程(英文版·第7版)

定 價(jià):¥69.00

作 者: (美)羅斯
出版社: 人民郵電出版社
叢編項(xiàng): 圖靈原版數(shù)學(xué)·統(tǒng)計(jì)學(xué)系列
標(biāo) 簽: 或然率論)

購(gòu)買(mǎi)這本書(shū)可以去


ISBN: 9787115165411 出版時(shí)間: 2007-09-01 包裝: 平裝
開(kāi)本: 0開(kāi) 頁(yè)數(shù): 565 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  本書(shū)是全球高校廣泛采用的概率論教材,通過(guò)大量的例子講述了概率論的基礎(chǔ)知識(shí),主要內(nèi)容有組合分析、概率論公理化、條件概率和獨(dú)立性、離散和連續(xù)型隨機(jī)變量、隨機(jī)變量的聯(lián)合分布、期望的性質(zhì)、極限定理等。本書(shū)附有大量的練習(xí),分為習(xí)題、理論習(xí)題和自檢習(xí)題三大類(lèi),其中自檢習(xí)題部分還給出全部解答。本書(shū)作為概率論的入門(mén)書(shū),適用于大專(zhuān)院校數(shù)學(xué)、統(tǒng)計(jì)、工程和相關(guān)專(zhuān)業(yè)(包括計(jì)算科學(xué)、生物、社會(huì)科學(xué)和管理科學(xué))的學(xué)生閱讀,也可供概率應(yīng)用工作者參考。

作者簡(jiǎn)介

  Sheldon M.Ross,國(guó)際知名概率與統(tǒng)計(jì)學(xué)家,南加州大學(xué)工業(yè)工程與運(yùn)籌系系主任。畢業(yè)于斯坦福大學(xué)統(tǒng)計(jì)系,曾在加州大學(xué)伯克利分校任教多年。研究領(lǐng)域包括:隨機(jī)模型、仿真模擬、統(tǒng)計(jì)分析、金融數(shù)學(xué)等。Ross教授著述頗豐,他的多種暢銷(xiāo)數(shù)學(xué)和統(tǒng)計(jì)教材均產(chǎn)生了世界性的影響,如Simulation(《統(tǒng)計(jì)模擬》)、Introduction to Probability Models(《應(yīng)用隨機(jī)過(guò)程:概率模型導(dǎo)論》)等(均由人民郵電出版社出版)。

圖書(shū)目錄

1 Combinatorial Analysis 
 1.1 Introduction 
 1.2 The Basic Principle of Counting 
 1.3 Permutations 
 1.4 Combinations 
 1.5 Multinomial Coefficients 
 1.6 The Number of Integer Solutions of Equations* 
  Summary 
  Problems 
  Theoretical Exercises 
  Self-Test Problems and Exercises 
2 Axioms of Probability 
 2.1 Introduction 
 2.2 Sample Space and Events 
 2.3 Axioms of Probability 
 2.4 Some Simple Propositions 
 2.5 Sample Spaces Having Equally Likely Outcomes 
 2.6 Probability as a Continuous Set Function* 
 2.7 Probability as a Measure of Belief 
  Summary 
  Problems 
  Theoretical Exercises 
  Self-Test Problems and Exercises 
3 Conditional Probability and Independence 
 3.1 Introduction 
 3.2 Conditional Probabilities 
 3.3 Bayes' Formula 
 3.4 Independent Events 
 3.5 P(.|F) Is a Probability 
  Summary 
  Problems 
  Theoretical Exercises 
  Self-Test Problems and Exercises 
4 Random Variables 
 4.1 Random Variables 
 4.2 Discrete Random Variables 
 4.3 Expected Value 
 4.4 Expectation of a Function of a Random Variable 
 4.5 Variance 
 4.6 The Bernoulli and Binomial Random Variables 
  4.6.1 Properties of Binomial Random Variables 
  4.6.2 Computing the Binomial Distribution Function 
 4.7 The Poisson Random Variable 
  4.7.1 Computing the Poisson Distribution Function 
 4.8 Other Discrete Probability Distributions 
  4.8.1 The Geometric Random Variable 
  4.8.2 The Negative Binomial Random Variable 
  4.8.3 The Hypergeometric Random Variable 
  4.8.4 The Zeta (or Zipf) Distribution 
 4.9 Properties of the Cumulative Distribution Function 
  Summary 
  Problems 
  Theoretical Exercises 
  Self-Test Problems and Exercises 
5 Continuous Random Variables 
 5.1 Introduction 
 5.2 Expectation and Variance of Continuous Random Variables 
 5.3 The Uniform Random Variable 
 5.4 Normal Random Variables 
  5.4.1 The Normal Approximation to the Binomial Distribution 
 5.5 Exponential Random Variables 
  5.5.1 Hazard Rate Functions 
 5.6 Other Continuous Distributions 
  5.6.1 The Gamma Distribution 
  5.6.2 The Weibull Distribution 
  5.6.3 The Cauchy Distribution 
  5.6.4 The Beta Distribution 
 5.7 The Distribution of a Function of a Random Variable 
  Summary 
  Problems 
  Theoretical Exercises 
  Self-Test Problems and Exercises 
6 Jointly Distributed Random Variables 
 6.1 Joint Distribution Functions 
 6.2 Independent Random Variables 
 6.3 Sums of Independent Random Variables 
 6.4 Conditional Distributions: Discrete Case 
 6.5 Conditional Distributions: Continuous Case 
 6.6 Order Statistics* 
 6.7 Joint Probability Distribution of Functions of Random Variables 
 6.8 Exchangeable Random Variables* 
  Summary 
  Problems 
  Theoretical Exercises 
  Self-Test Problems and Exercises 
7 Properties of Expectation 
 7.1 Introduction 
 7.2 Expectation of Sums of Random Variables 
  7.2.1 Obtaining Bounds from Expectations via the Probabilistic Method* 
  7.2.2 The Maximum-Minimums Identity* 
 7.3 Moments of the Number of Events that Occur 
 7.4 Covariance, Variance of Sums, and Correlations 
 7.5 Conditional Expectation 
  7.5.1 Definitions 
  7.5.2 Computing Expectations by Conditioning 
  7.5.3 Computing Probabilities by Conditioning 
  7.5.4 Conditional Variance 
 7.6 Conditional Expectation and Prediction 
 7.7 Moment Generating Functions 
  7.7.1 Joint Moment Generating Functions 
 7.8 Additional Properties of Normal Random Variables 
  7.8.1 The Multivariate Normal Distribution 
  7.8.2 The Joint Distribution of the Sample Mean and Sample Variance 
 7.9 General Definition of Expectation 
  Summary 
  Problems 
  Theoretical Exercises 
  Self-Test Problems and Exercises 
8 Limit Theorems 
 8.1 Introduction 
 8.2 Chebyshev's Inequality and the Weak Law of Large Numbers 
 8.3 The Central Limit Theorem 
 8.4 The Strong Law of Large Numbers 
 8.5 Other Inequalities 
 8.6 Bounding The Error Probability 
  Summary 
  Problems 
  Theoretical Exercises 
  Self-Test Problems and Exercises 
9 Additional Topics in Probability 
 9.1 The Poisson Process 
 9.2 Markov Chains 
 9.3 Surprise, Uncertainty, and Entropy 
 9.4 Coding Theory and Entropy 
  Summary 
  Theoretical Exercises 
  Self-Test Problems and Exercises 
10 Simulation 
 10.1 Introduction 
 10.2 General Techniques for Simulating Continuous Random Variables 
  10.2.1 The Inverse Transformation Method 
  10.2.2 The Rejection Method 
 10.3 Simulating from Discrete Distributions 
 10.4 Variance Reduction Techniques 
  10.4.1 Use of Antithetic Variables 
  10.4.2 Variance Reduction by Conditioning 
  10.4.3 Control Variates 
  Summary 
  Problems 
  Self-Test Problems and Exercises 
APPENDICES
A Answers to Selected Problems 
B Solutions to Self-Test Problems and Exercises 
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)