注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術自然科學數(shù)學復變量(第2版)

復變量(第2版)

復變量(第2版)

定 價:¥69.00

作 者: (Ablowitz)阿布婁韋提茲、(美國)M.J
出版社: 世界圖書出版公司
叢編項: 應用數(shù)學系列叢書
標 簽: 函數(shù)

ISBN: 9787506291804 出版時間: 2008-01-01 包裝: 平裝
開本: 24 頁數(shù): 647 字數(shù):  

內(nèi)容簡介

  《復變量(第2版)》是Cambridge《應用數(shù)學系列叢書》之一,內(nèi)容相當精辟,巧妙地展示了復變量在數(shù)學科學中的核心地位以及其在工程和物理科學應用中的關鍵性作用。復變量的引入不僅增加數(shù)學理論本身的完美性,更重要的是提供了一種解決一些數(shù)學疑難問題的途徑,甚至可以說是解決有些問題的唯一途徑?!稄妥兞浚ǖ?版)》的內(nèi)容分為兩大部分。第一部分是整個課程的引入,包括:解析函數(shù),積分,級數(shù)和殘數(shù)積分等初等理論以及一些過渡性方法:復平面的普通微分方程、數(shù)值方法等。第二部分包括保形映射,漸近擴張以及Riemann-Hilbert問題。每章節(jié)都提供了大量的應用、圖例以及練習,這些可以幫助讀者加深對復變量的基本概念和基本定理的理解。新版本做了全新的改進,是研究生以及分析方向本科生的理想教程。

作者簡介

暫缺《復變量(第2版)》作者簡介

圖書目錄

Sections denoted with an asterisk (*) can be either omitted or read
independently.
Preface
PartⅠ Fundamentals and Techniques of Complex Function Theory
1 Complex Numbers and Elementary Functions
1.1 Complex Numbers and Their Properties
1.2 Elementary Functions and Stereographic Projections
1.2.1 Elementary Functions
1.2.2 Stereographic Projections
1.3 Limits, Continuity, and Complex Differentiation
1.4 Elementary Applications to Ordinary Differential Equations
2 Analytic Functions and Integration
2.1 Analytic Functions
2.1.1 The Cauchy-Riemann Equations
2.1.2 Ideal Fluid Flow
2.2 Multivalued Functions
*2.3 More Complicated Multivalued Functions and Riemann Surfaces
2.4 Complex Integration
2.5 Cauchys Theorem
2.6 Cauchys Integral Formula, Its a Generalization and Consequences
2.6.1 Cauchys Integral Formula and Its Derivatives
*2.6.2 Liouville, Morera, and Maximum-Modulus Theorems
*2.6.3 Generalized Cauchy Formula and a Derivatives
*2.7 Theoretical Developments
3 Sequences, Series, and Singularities of Complex Functions
3.1 Definitions and Basic Properties of Complex Sequences,Series
3.2 Taylor Series
3.3 Laurent Series
*3.4 Theoretical Results for Sequences and Series
3.5 Singularities of Complex Functions
3.5.1 Analytic Continuation and Natural Barriers
*3.6 Infinite Products and Mittag-Leffler Expansions
*3.7 Differential Equations in the Complex Plane: Painleve Equations
*3.8 Computational Methods
*3.8.1 Laurent Series
*3.8.2 Differential Equations
4 Residue Calculus and Applications of Contour Integration
4.1 Cauchy Residue Theorem
4.2 Evaluation of Certain Definite Integrals
4.3 Principal Value Integrals and Integrals with Branch Points
4.3.1 Principal Value Integrals
4.3.2 Integrals with Branch Points
4.4 The Argument Principle, Rouches Theorem
*4.5 Fourier and Laplace Transforms
*4.6 Applications of Transforms to Differential Equations
PartⅡ Applications of Complex Function Theory
5 Conformal Mappings and Applications
5.1 Introduction
5.2 Conformal Transformations
5.3 Critical Points and Inverse Mappings
5.4 Physical Applications
*5.5 Theoretical Considerations - Mapping Theorems
5.6 The Schwarz-Christoffel Transformation
5.7 Bilinear Transformations
*5.8 Mappings Involving Circular Arcs
5.9 Other Considerations
5.9.1 Rational Functions of the Second Degree
5.9.2 The Modulus of a Quadrilateral
*5.9.3 Computational Issues
6 Asymptotic Evaluation of Integrals
6.1 Introduction
6.1.1 Fundamental Concepts
6.1.2 Elementary Examples
6.2 Laplace Type Integrals
6.2.1 Integration by Parts
6.2.2 Watsons Lemma
6.2.3 Laplaces Method
6.3 Fourier Type Integrals
6.3.1 Integration by Parts
6.3.2 Analog of Watsons Lcmma
6.3.3 The Stationary Phase Method
6.4 The Method of Steepest Descent
6.4.1 Laplaces Method for Complex Contours
6.5 Applications
6.6 The Stokes Phenomenon
*6.6.1 Smoothing of Stokes Discontinuities
6.7 Related Techniques
*6.7.1 WKB Method
*6.7.2 The Mellin Transform Method
7 Riemann-Hiibert Problems
7.1 Introduction
7.2 Cauchy Type Integrals
7.3 Scalar Riemann-Hilbert Problems
7.3.1 Closed Contours
7.3.2 Open Contours
7.3.3 Singular Integral Equations
7.4 Applications of Scalar Riemann-Hilbert Problems
7.4.1 Riemann-Hilbert Problems on the Real Axis
7.4.2 The Fourier Transform
7.4.3 The Radon Transform
*7.5 Matrix Riemann-Hilbert Problems
7.5.1 The Riemann-Hilbert Problem for Rational Matrices
7.5.2 Inhomogeneous Riemann-Hilbert Problems and Singular Equations
7.5.3 The Riemann-Hilbert Problem for Triangular Matrices
7.5.4 Some Results on Zero Indices
7.6 The DBAR Problem
7.6.1 Generalized Analytic Functions
*7.7 Applications of Matrix Riemann-Hilbert Problems and Problems
Appendix A Answers to Odd-Numbered Exercises
Bibliography
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號