注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)復(fù)變函數(shù)及應(yīng)用英文版第8版

復(fù)變函數(shù)及應(yīng)用英文版第8版

復(fù)變函數(shù)及應(yīng)用英文版第8版

定 價(jià):¥65.00

作 者: (美)布朗(Brown,J.W.) 等著
出版社: 機(jī)械工業(yè)出版社
叢編項(xiàng): 經(jīng)典原版書庫(kù)
標(biāo) 簽: 函數(shù)

ISBN: 9787111253631 出版時(shí)間: 2009-03-01 包裝: 平裝
開本: 16開 頁(yè)數(shù): 468 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  本書初版于20世紀(jì)40年代,是經(jīng)典的本科數(shù)學(xué)教材之一,對(duì)復(fù)變函數(shù)的教學(xué)影響深遠(yuǎn),被美國(guó)加州理工學(xué)院、加州大學(xué)伯克利分校、佐治亞理工學(xué)院、普度大學(xué)、達(dá)特茅斯學(xué)院、南加州大學(xué)等眾多名校采用。本書闡述了復(fù)變函數(shù)的理論及應(yīng)用,還介紹了留數(shù)及保形映射理論在物理、流體及熱傳導(dǎo)等邊值問(wèn)題中的應(yīng)用。新版對(duì)原有內(nèi)容進(jìn)行了重新組織,增加了更現(xiàn)代的示例和應(yīng)用,更加方便教學(xué)。

作者簡(jiǎn)介

  James Ward Brown密歇根大學(xué)迪爾本分校數(shù)學(xué)系教授,美國(guó)數(shù)學(xué)學(xué)會(huì)會(huì)員。1964年于密歇根大學(xué)獲得數(shù)學(xué)博士學(xué)位。他曾經(jīng)主持研究美國(guó)國(guó)家自然科學(xué)基金項(xiàng)目,獲得過(guò)密歇根大學(xué)杰出教師獎(jiǎng),并被列入美國(guó)名人錄。Ruel V.Churchill已故密歇根大學(xué)知名教授。早在60多年前,就開始編寫一系列經(jīng)典教材。除本書外,還與James Ward Brown合著《Fourier Series and Boundary Value Problems》。

圖書目錄

Preface
1 Complex Numbers
Sums and Products
Basic Algebraic Properties
Further Properties
Vectors and Moduli
Complex Conjugates
Exponential Form
Products and Powers in Exponential Form
Arguments of Products and Quotients
Roots of Complex Numbers
Examples
Regions in the Complex Plane
2 Analytic Functions
Functions of a Complex Variable
Mappings
Mappings by the Exponential Function
Limits
Theorems on Limits
Limits Involving the Point at Infinity
Continuity
Derivatives
Differentiation Formulas
Cauchy-Riemann Equations
Sufficient Conditions for Differentiability
Polar Coordinates
Analytic Functions
Examples
Harmonic Functions
Uniquely Determined Analytic Functions
Reflection Principle
3 Elementary Functions
The Exponential Function
The Logarithmic Function
Branches and Derivatives of Logarithms
Some Identities Involving Logarithms
Complex Exponents
Trigonometric Functions
Hyperbolic Functions
Inverse Trigonometric and Hyperbolic Functions
4 Integrals
Derivatives of Functions w(t)
Definite Integrals of Functions w(t)
Contours
Contour Integrals
Some Examples
Examples with Branch Cuts
Upper Bounds for Moduli of Contour Integrals
Antiderivatives
Proof of the Theorem
Cauchy-Goursat Theorem
Proof of-the Theorem
5 Series
6 Residues and Poles
7 Applications of Residues
8 Mapping by Elementary Functions
9 Conformal Mapping
10 Applications of Conformal Mapping
11 The Schwarz-Chrstoffer Transformation
12 Integral Formulas of the Poisson Type
Appendixes
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)