Peter J.Brockwell 世界著名統(tǒng)計(jì)學(xué)家。ASA(美國統(tǒng)計(jì)協(xié)會(huì))、IMS(數(shù)理統(tǒng)計(jì)學(xué)會(huì))會(huì)士??屏_拉多州立大學(xué)統(tǒng)計(jì)系榮休教授。他是Journalof Time Series Analysis副主編,并Li Richard A.Davis合作開發(fā)了時(shí)間序列軟件包ITSM2000。Richard A.Davis 世界著名統(tǒng)計(jì)學(xué)家。ASA(美國統(tǒng)計(jì)協(xié)會(huì))、IMS(數(shù)理統(tǒng)計(jì)學(xué)會(huì))會(huì)士。科羅拉多州立大學(xué)統(tǒng)計(jì)系教授,1997年至2005年擔(dān)任該系的系主任。1 998年榮獲計(jì)量經(jīng)濟(jì)學(xué)Koopmans獎(jiǎng)。他是Stochastic Processes and Their Applications,Annals of Applied Probability等期刊編委,是Proceedings ofthe American Mathematics Society的統(tǒng)計(jì)學(xué)領(lǐng)域主編。
圖書目錄
1. Introduction 1.1. Examples of Time Series 1.2. Objectives of Time Series Analysis 1.3. Some Simple Time Series Models 1.3.1. Some Zero-Mean Models 1.3.2. Models with Trend and Seasonality 1.3.3. A General Approach to Time Series Modeling 1.4. Stationary Models and the Autocorrelation Function 1.4.1. The Sample Autocorrelation Function 1.4.2. A Model for the Lake Huron Data 1.5. Estimation and Elimination of Trend and Seasonal Components 1.5.1. Estimation and Elimination of Trend in the Absence of Seasonality 1.5.2. Estimation and Elimination of Both Trend and Seasonality 1.6. Testing the Estimated Noise Sequence Problems 2. Stationary Processes 2.1. Basic Properties 2.2. Linear Processes 2.3. Introduction to ARMA Processes 2.4. Properties of the Sample Mean and Autocorrelation Function 2.4.1. Estimation of tz 2.4.2. Estimation of y(.) and p(.) 2.5. Forecasting Stationary Time Series 2.5.1. The Durbin-Levinson Algorithm 2.5.2. The Innovations Algorithm 2.5.3. Prediction of a Stationary Process in Terms of Infinitely Many Past Values 2.6. The Wold Decomposition Problems 3. ARMA Models 3.1. ARMA(p, q) Processes 3.2. The ACF and PACF of an ARMA(p, q) Process 3.2.1. Calculation of the ACVF 3.2.2. The Autocorrelation Function 3.2.3. The Partial Autocorrelation Function 3.2.4. Examples 3.3. Forecasting ARMA Processes Problems 4. Spectral Analysis 4.1. Spectral Densities 4.2. The Periodogram 4.3. Time-Invariant Linear Filters 4.4. The Spectral Density of an ARMA Process Problems 5. Modeling and Forecasting with ARMA Processes 5. I. Preliminary Estimation 5.1.1. Yule-Walker Estimation 5.1.2. Burgs Algorithm 5.1.3. The Innovations Algorithm 5.1.4. The Hannan-Rissanen Algorithm 5.2. Maximum Likelihood Estimation 5.3. Diagnostic Checking 5.3.1. The Graph of 5.3.2. The Sample ACF of the Residuals 5.3.3. Tests for Randomness of the Residuals 5.4. Forecasting 5.5. Order Selection 5.5.1. The FPE Criterion 5.5.2. The AICC Criterion Problems 6. Nonstationary and Seasonal Time Series Models 6.1. ARIMA Models for Nonstationary Time Series 6.2. Identification Techniques 6.3. Unit Roots in Time Series Models 6.3.1. Unit Roots in Autoregressions 6.3.2. Unit Roots in Moving Averages 6.4. Forecasting ARIMA Models 6.4.1. The Forecast Function 6.5. Seasonal ARIMA Models 6.5.1. Forecasting SARIMA Processes 6.6. Regression with ARMA Errors 6.6.1. OLS and GLS Estimation 6.6.2. ML Estimation Problems 7. Multivariate Time Series 7.1. Examples 7.2. Second-Order Properties of Multivariate Time Series 7.3. Estimation of the Mean and Covariance Function 7.3.1. Estimation of 7.3.2. Estimation of F(h) 7.3.3. Testing for Independence of Two Stationary Time Series 7.3.4. Bartletts Formula 7.4. Multivariate ARMA Processes 7.4.1. The Covariance Matrix Function of a Causal ARMA Process 7.5. Best Linear Predictors of Second-Order Random Vectors 7.6. Modeling and Forecasting with Multivariate AR Processes 7.6.1. Estimation for Autoregressive Processes Using Whittles Algorithm 7.6.2. Forecasting Multivariate Autoregressive Processes 7.7. Cointegration Problems 8. State-Space Models 8.1. State-Space Representations 8.2. The Basic Structural Model 8.3. State-Space Representation of ARIMA Models 8.4. The Kalman Recursions 8.5. Estimation For State-Space Models 8.6. State-Space Models with Missing Observations 8.7. The EM Algorithm 8.8. Generalized State-Space Models 8.8.1. Parameter-Driven Models 8.8.2. Observation-Driven Models Problems 9. Forecasting Techniques 9.1. The ARAR Algorithm 9.1.1. Memory Shortening 9.1.2. Fitting a Subset Autoregression 9.1.3. Forecasting 9.1.4. Application of the ARAR Algorithm 9.2. The Holt-Winters Algorithm 9.2.1. The Algorithm 9.2.2. Holt-Winters and ARIMA Forecasting 9.3. The Holt-Winters Seasonal Algorithm 9.3.1. The Algorithm 9.3.2. Holt-Winters Seasonal and ARIMA Forecasting 9.4. Choosing a Forecasting Algorithm Problems 10. Further Topics 10.1. Transfer Function Models 10.1.1. Prediction Based on a Transfer Function Model 10.2. Intervention Analysis 10.3. Nonlinear Models 10.3.1. Deviations from Linearity 10.3.2. Chaotic Deterministic Sequences 10.3.3. Distinguishing Between White Noise and iid Sequences 10.3.4. Three Useful Classes of Nonlinear Models 10.3.5. Modeling Volatility 10.4. Continuous-Time Models 10.5. Long-Memory Models Problems A. Random Variables and Probability Distributions A. 1. Distribution Functions and Expectation A.2. Random Vectors A.3. The Multivariate Normal Distribution Problems B Statistical Complements C Mean Square Convergence D An ITSM Tutorial References Index