注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)數(shù)論中的模函數(shù)和狄利克萊級數(shù)

數(shù)論中的模函數(shù)和狄利克萊級數(shù)

數(shù)論中的模函數(shù)和狄利克萊級數(shù)

定 價:¥35.00

作 者: (美)阿波斯托爾 著
出版社: 世界圖書出版公司
叢編項:
標(biāo) 簽: 組合理論

ISBN: 9787510004407 出版時間: 2009-04-01 包裝: 平裝
開本: 16開 頁數(shù): 204 字?jǐn)?shù):  

內(nèi)容簡介

  This is the second volume of a 2-volume textbook* which evolved from a course (Mathematics 160) offered at the California Institute of Technology during the last 25 years.The second volume presupposes a background in number theory com-parable to that provided in the first volume, together with a knowledge of the basic concepts of complex analysis

作者簡介

暫缺《數(shù)論中的模函數(shù)和狄利克萊級數(shù)》作者簡介

圖書目錄

Chapter1 Ellipticfunctions
1.1 Introduction
1.2 Doublyperiodicfunctions
1.3 Fundamentalpairsofperiods
1.4 Ellipticfunctions
1.5 Constructionofellipticfunctions
1.6 TheWeierstrassfunction
1.7 TheLaurentexpansionofganeartheorigin
1.8 Differentialequationsatisfiedbyξ
1.9 TheEisensteinseriesandtheinvariantsg2andg3
1.10 Thenumberse1,e2,e3
1.11 ThediscriminantA
1.12 KleinsmodularfunctionJ(τ)
1.13 InvarianceofJunderunimodulartransformations
1.14 TheFourierexpansionsofg2(τ)andg3(τ)
1.15 TheFourierexpansionsof△(τ)andJ(τ)
ExercisesforChapter1
Chapter2 TheModulargroupandmodularfunctions
2.1 M6biustransformations
2.2 Themodulargroup
2.3 Fundamentalregions
2.4 Modularfunctions
2.5 Specialvaluesof
2.6 Modularfunctionsasrationalfunctionsof
2.7 Mappingpropertiesof
2.8 ApplicationtotheinversionproblemforEisensteinseries
2.9 ApplicationtoPicardstheorem
ExercisesforChapter2
Chapter3 TheDedekindetafunction
3.1 Introduction
3.2 SiegeisproofofTheorem3.1
3.3 Infiniteproductrepresentationfor△(τ)
3.4 Thegeneralfunctionalequationforη(τ)
3.5 Isekistransformationformula
3.6 DeductionofDedekindsfunctionalequationfromIsekisformula
3.7 PropertiesofDedekindsums
3.8 ThereciprocitylawforDedekindsums
3.9 CongruencepropertiesofDedekindsums
3.1 0TheEisensteinseriesG2(τ)
ExercisesforChapter3
Chapter4 Congruencesforthecoefficientsofthemodularfunctionj
4.1 Introduction
4.2 ThesubgroupFo(q)
4.3 FundamentalregionofFo(p)
4.4 FunctionsautomorphicunderthesubgroupFo(p)
4.5 ConstructionoffunctionsbelongingtoFo(p)
4.6 Thebehavioroffpunderthegeneratorsofг
4.7 Thefunction(τ)=△(qτ)/△(τ)
4.8 Theunivalentfunctionφ(τ)
4.9 Invarianceofφ(τ)undertransformationsofг0(q)
4.1 0Thefunctionjpexpressedasapolynomialinφ
ExercisesforChapter4
Chapter5 Rademachersseriesforthepartitionfunction
5.1 Introduction
5.2 Theplanoftheproof
5.3 DedekindsfunctionalequationexpressedintermsofF
5.4 Fareyfractions
5.5 Fordcircles
5.6 Rademacherspathofintegration
5.7 Rademachersconvergentseriesforp(n)
ExercisesforChapter5
Chapter6 Modularformswithmultiplicativecoefficients
6.1 Introduction
6.2 Modularformsofweightk
6.3 Theweightformulaforzerosofanentiremodularform
6.4 RepresentationofentireformsintermsofG4andG6
6.5 ThelinearspaceMkandthesubspaceMk.o
6.6 Classificationofentireformsintermsoftheirzeros
6.7 TheHeckeoperatorsTn
6.8 Transformationsofordern
6.9 BehaviorofTnfunderthemodulargroup
6.10 MultiplicativepropertyofHeckeoperators
6.11 EigenfunctionsofHeckeoperators
6.12 Propertiesofsimultaneouseigenforms
6.13 Examplesofnormalizedsimultaneouseigenforms
6.14 RemarksonexistenceofsimultaneouseigenformsinM2k.0
6.15 EstimatesfortheFouriercoefficientsofentireforms
6.16 ModularformsandDirichletseries
Exerci

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號