注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)線性代數(shù)

線性代數(shù)

線性代數(shù)

定 價:¥45.00

作 者: (美)哥汝布 著
出版社: 世界圖書出版公司
叢編項:
標(biāo) 簽: 組合理論

ISBN: 9787510004438 出版時間: 2009-04-01 包裝: 平裝
開本: 16開 頁數(shù): 451 字?jǐn)?shù):  

內(nèi)容簡介

  This textbook gives a detailed and comprehensive presentation of linear algebra based on an axiomatic treatment of linear spaces. For this fourth edition some new material has been added to the text, for instance, the intrinsic treatment of the classical adjoint of a linear transformation in Chapter IV, as well as the discussion of quaternions and the classification of associative division algebras in Chapter VII. Chapters XII and XIII have been substantially rewritten for the sake of clarity, but the contents remain basically the same as before. Finally, a number of problems covering new topics- e.g. complex structures, Caylay numbers and symplectic spaces- have been added. ...

作者簡介

暫缺《線性代數(shù)》作者簡介

圖書目錄

Chapter 0. Prerequisites
Chapter Ⅰ Vector spaces
 1. Vector spaces
 2. Linear mappings
 3. Subspaces and factor spaces
 4. Dimension
 5. The topology of a real finite dimensional vector space..
Chapter Ⅱ. Linear mappings
 1. Bask properties
 2. Operatiom with linear mappings
 3. Linear isomorphisrns
 4. Direct sum of vector spaces
 5. Dual vector spaces
 6. Finite dimensional vector spaces
Chapter Ⅲ. Matrices
 1. Matrices and systems of linear equations
 2. Multiplication of matrices
 3. Basis transformation
 4. Elementary transformations
Chapter Ⅳ. Determinants
 1. Determinant functions
 2. The determinant of a linear transformation
 3. The determinant of a matrix
 4. Dual determinant functions
 5. The adjoint matrix
 6. The characteristic polynomial
 7. The trace
 8. Oriented vector spaces
Chapter Ⅴ. Algebras
 1. Basic properties
 2. Ideals
 3. Change of coefficient field of a vector space
Chapter Ⅵ. Gradations and homology
 1. G-graded vector spaces
 2. G-graded algebras
 3. Differential spaces and differential algeras
Chapter Ⅶ. Inner product spaces
 1. The inner product
 2. Orthonormal bases
 3. Normed determinant functions
 4. Duality in an inner product space
 5. Normed vector spaces
 6. The algebra o'f quaternions
Chapter Ⅷ. Linear mappings of inner product spaces
 1. The adjoint mapping
 2.'Selfadjoint mappings
 3. Orthogonal projections
 4. Skew mappings
 5. Isometric mappings
 6. Rotations of Euclidean spaces of dimension 2, 3 and 4
 7. Differentiable families of linear automorphisms
Chapter Ⅸ.Symmetric bilinear functions
 1. Bilinear and quadratic functions
 2. The decomposition of E
 3. Pairs of symmetric bi|inear functions
 4. Pseudo-Euclidean spaces
 5. Linear mappings of Pseudo-Euclidean spaces
Chapter Ⅹ. Quadrics
 1. Affine spaces
 2. Quadrics in the affine space
 3. Affine equivalence of quadrics
 4. Quadrics in the Euclidean space
Chapter Ⅺ. Unitary spaces
 1. Hermitian functions
 2. Unitary spaces
 3. Linear mappings of unitary spaces
 4. Unitary mappings of the complex Diane
 5. Application to Lorentz-transformations
Chapter Ⅺ. Polynomial algebra
 1. Basic properties
 2. Ideals and divisibility
 3. Factor algebras
 4. The structure of factor algebras
Chapter ⅩⅡ. Theory of a linear transformation
 1. Polynomials in a linear transformation
 2. Generalized eigenspaces
 3. Cyclic spaces
 4. Irreducible spaces
 5. Application of cyclic spaces
 6. Nilpotent and semisimple transformations
 7. Applications to inner product spaces
Bibliography
Subject Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號