注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)什么是數(shù)學(xué):對(duì)思想和方法的基本研究(英文版·第2版)

什么是數(shù)學(xué):對(duì)思想和方法的基本研究(英文版·第2版)

什么是數(shù)學(xué):對(duì)思想和方法的基本研究(英文版·第2版)

定 價(jià):¥59.00

作 者: (美)柯朗,(美)羅賓 著
出版社: 人民郵電出版社
叢編項(xiàng): 圖靈原版數(shù)學(xué)·統(tǒng)計(jì)學(xué)系列
標(biāo) 簽: 數(shù)學(xué)理論

購(gòu)買這本書(shū)可以去


ISBN: 9787115206930 出版時(shí)間: 2009-06-01 包裝: 平裝
開(kāi)本: 大32開(kāi) 頁(yè)數(shù): 566 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  本書(shū)是世界著名的數(shù)學(xué)科普讀物。它薈萃了許多數(shù)學(xué)的奇珍異寶,對(duì)數(shù)學(xué)世界做了生動(dòng)而易懂的描述。內(nèi)容涵蓋代數(shù)、幾何、微積分、拓?fù)涞阮I(lǐng)域,其中還穿插了許多相關(guān)的歷史和哲學(xué)知識(shí)。本書(shū)不僅是數(shù)學(xué)專業(yè)人員的必讀之物,也是任何愿意做科學(xué)思考者的優(yōu)秀讀物。對(duì)于中學(xué)數(shù)學(xué)教師、高中生和大學(xué)生來(lái)說(shuō),這都是一本極好的參考書(shū)。

作者簡(jiǎn)介

  Richard Courant(1888-1972)20世紀(jì)杰出的數(shù)學(xué)家,哥廷根學(xué)派重要成員。曾擔(dān)任紐約大學(xué)數(shù)學(xué)系主任和數(shù)學(xué)科學(xué)研究院院長(zhǎng),為了紀(jì)念他,紐約大學(xué)數(shù)學(xué)科學(xué)研究院1964年改名為柯朗數(shù)學(xué)科學(xué)研究院!成為世界上最大的應(yīng)用數(shù)學(xué)研究中心。他寫(xiě)的書(shū)《數(shù)學(xué)物理方程》為每一個(gè)物理學(xué)家所熟知,而他的《微積分學(xué)》也被認(rèn)為是該學(xué)科的代表作。

圖書(shū)目錄

PREFACE TO SECOND EDITION
PREFACE TO REVISED EDITIONS
PREFACE TO FIRST EDITION
How TO USE THE BOOK
WHAT IS MATHEMATICS?
CHAPTER Ⅰ. THE NATURAL NUMBERS
Introduction
1. Calculation with Integers
1. Laws of Arithraetic. 2. The Representation of Integers. 3. Computation in Systems Other than the Decimal.
2. The Infinitude of the Number System, Mathematical Induction
1. The Principle of Mathematical .Induction. 2. The Arithmetical Progression. 3. The Geometrical Progression. 4. The Sum of the First n Squares. 5. An Important Inequality. 6. The Binomial Theorem. 7. Further Remarks on Mathematical Induction.
SUPPLEMENT TO CHAPTER I. THE THEORY OF NUMBERS
Introduction
1. The Prime Numbers
1. Fundamental Facts. 2. The Distribution of the Primes. 3. Formulas Producing Primes. b. Primes in Aritlunetical Progressions. c. The Prime Number Theorem. d. Two Unsolved Problems Concerning Prime Numbers.
2. Congruences
1. General Concepts. 2. Fermat's Theorem. 3. Quadratic Residues.
3. Pythagorean Numbers and Fermat's Last Theorem
4. The Euclidean Algorithm
1. General Theory. 2. Application to the Fundamental Theorem of Arithmetic. 3. Euler's Function. Fermat's Theorem Again. 4. Continued Fractions. Diophantine Equations.
CHAPTER Ⅱ. THE NUMBER SYSTEM OF MATHEMATICS
Introduction
1. The Rational Numbers
1. Rational Numbers as a Device for Measuring. 2. Intrinsic Need for the Rational Numbers. Principal of Generation. 3. Geometrical Interpretation of Rational Numbers.
2. Incommensurable Segments, Irrational Numbers, and the Concept of Limit
1. Introduction. 2. Decimal Fractions. Infinite Decimals. 3. Limits. Infinite Geometrical Series. 4. Rational Numbers and Periodic Deci- maiN. 5. General Definition of Irrational Numbers by Nested
Intervals 6. Alternative Methods of Defining Irrational Numbers. Dedekind Cuts.
3. Remarks on Analytic Geometry
1. The Basic Principle. 2. Equations of Lines and Curves.
4. The Mathematical Analysis of Infinity
1. Fundamental Concepts. 2. The Denumerability of the Rational Numbers and the Non-Denumerability of the Continuum. 3. Cantor's "Cardinal Numbers." 4. The Indirect Method of Proof. 5. The Paradoxes of the Infinite. 6. The Foundations of Mathematics.
5. Complex Numbers
1. The Origin of Complex Numbers. 2. The Geometrical Interpretation of Complex Numbers. 3. De Moivre's Formula and the Roots of Unity. 4. The Fundamental Theorem of Algebra.
6. Algebraic and Transcendental Numbers
1. Definition and Existence. 2. Liouville's Theorem and the Construction of Transcendental Numbers.
SUPPLEMENT TO CHAPTER II. THE ALGEBRA OF SETS
1. General Theory. 2. Application to Mathematical Logic. 3. An Application to the Theory of Probability.
CHAPTER Ⅰ. GEOMETRICAL CONSTRUCTIONS. THE ALGEBRA OF NUMBER FIELDS
Introduction
Part Ⅰ. Impossibility Proofs and Algebra
1. Fundamental Geometrical Constructions
1. Construction of Fields and Square Root Extraction. 2. Regular Polygons. 3. Apollonius' Problem.
2. Constructible Numbers and Number Fields
1. General Theory. 2. All Constructible Numbers are Algebraic.
3. The Unsolvability of the Three Greek Problems
1. Doubling the Cube. 2. A Theorem on Cubic Equations. 3. Trisecting the Angle. 4. The Regular Heptagon. 5. Remarks on the Problem of Squaring the Circle.
Part Ⅱ. Various Methods for Performing Constructions
4. Geometrical Transformations. Inversion
1. General Remarks. 2. Properties of Inversion. 3. Geometrical Constrnction of Inverse Points. 4. How to Bisect a Segment and Find the Center of a Circle with the Compass Alone.
5. Constructions with Other Tools. Mascheroni Constructions with Compass Alone
1. A Classical Construction for Doubling the Cube. 2. Restriction to the Use of the Compass Alone. 3. Drawing with Mechanical Instruments. Mechanical Curves. Cycloids. 4. Linkages. PeauceUier's and Hart's Inversors.
6. More About Inversions and its Applications
1. Invariance of Angles. Families of Circles. 2. Application to the Problem of Apollonius. 3. Repeated Reflections.
CHAPTER Ⅳ. PROJECTIVE GEOMETRY. AXIOMATICS. NON-EucLIDEAN GEOMETRIES .
1. Introduction
……
CHAPTER Ⅴ TOPOLOGY
CHAPTER Ⅵ FUNCTIONS AND LIMITS
CHAPTER Ⅶ MAXIMA AND MINIMA
CHAPTER Ⅷ THE CALCULUS
CHAPTER Ⅸ RECENT DEVELOPMENTS
APPENDIX: SUPPLEMENTARY REMARKS, PROBLEMS, AND EXERCISES
SUGGESTIONS FOR FURTHER READING
SUGGESTIONS FOR ADDITIONAL READING
INDEX

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)