注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)數(shù)理邏輯引論與歸結(jié)原理(英文版)

數(shù)理邏輯引論與歸結(jié)原理(英文版)

數(shù)理邏輯引論與歸結(jié)原理(英文版)

定 價:¥78.00

作 者: 本社 編
出版社: 科學(xué)出版社
叢編項:
標(biāo) 簽: 高等數(shù)學(xué)

ISBN: 9787030228994 出版時間: 2009-01-01 包裝: 精裝
開本: 16開 頁數(shù): 335 字?jǐn)?shù):  

內(nèi)容簡介

  Introduction to Mathematical Logic and Resolution Principle(數(shù)理邏輯引論與歸結(jié)原理)在第一版的基礎(chǔ)上進(jìn)行修訂再版,全書共9章,內(nèi)容可分為Boole代數(shù)理論,命題演算與謂詞演算理論,歸結(jié)原理理論,多值邏輯的最新理論等4部分。同時,在第一版的基礎(chǔ)上對“計量邏輯學(xué)”,關(guān)于一階系統(tǒng)K完備性的證明等諸多內(nèi)容做了補(bǔ)充或改寫。《Introduction to Mathematical…(數(shù)理邏輯引論與歸結(jié)原理)》可供計算機(jī)專業(yè)、應(yīng)用數(shù)學(xué)專業(yè)、人工智能專業(yè)的研究生與高年級本科生及教師閱讀。

作者簡介

暫缺《數(shù)理邏輯引論與歸結(jié)原理(英文版)》作者簡介

圖書目錄

Preface
Chapter 1 Preliminaries
1.1 Partially ordered sets
1.2 Lattices
1.3 Boolean algebras
Chapter 2 Propositional Calculus
2.1 Propositions and their symbolization
2.2 Semantics of propositional calculus
2.3 Syntax of propositional calculus
Chapter 3 Semantics of First Order Predicate Calculus
3.1 First order languages
3.2 Interpretations and logically valid formulas
3.3 Logical equivalences
Chapter 4 Syntax of First Order Predicate Calculus
4.1 The formal system KL
4.2 Provable equivalence relations
4.3 Prenex normal forms
4.4 Completeness of the first order system KL
*4.5 Quantifier-free formulas
Chapter 5 Skolem's Standard Forms and Herbrand's Theorems
5.1 Introduction
5.2 Skolem standard forms
5.3 Clauses
*5.4 Regular function systems and regular universes
5.5 Herbrand universes and Herbrand's theorems
5.6 The Davis-Putnam method
Chapter 6 Resolution Principle
6.1 Resolution in propositional calculus
6.2 Substitutions and unifications
6.3 Resolution Principle in predicate calculus
6.4 Completeness theorem of Resolution Principle
6.5 A simple method for searching clause sets S
Chapter 7 Refinements of Resolution
7.1 Introduction
7.2 Semantic resolution
7.3 Lock resolution
7.4 Linear resolution
Chapter 8 Many-Valued Logic Calculi
8.1 Introduction
8.2 Regular implication operators
8.3 MV-algebras
8.4 Lukasiewicz propositional calculus
8.5 R0-algebras
8.6 The propositional deductive system L*
Chapter 9 Quantitative Logic
9.1 Quantitative logic theory in two-valued propositional logic system L
9.2 Quantitative logic theory in L ukasiewicz many-valued propositional logic systems Ln and Luk
9.3 Quantitative logic theory in many-valued R0-propositional logic systems L*n and L*
9.4 Structural characterizations of maximally consistent theories
9.5 Remarks on Godel and Product logic systems
Bibliography
Indent

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號