Erik Dahlman博士,世界知名移動(dòng)通信技術(shù)專家,愛立信研究院資深研究員,畢業(yè)于瑞典皇家工學(xué)院。早期從事WCDMA的3G移動(dòng)通信技術(shù)的研發(fā)和標(biāo)準(zhǔn)制定工作,后來成為3GPP項(xiàng)目成員,目前主要負(fù)責(zé)WCDMA R5的標(biāo)準(zhǔn)化工作以及下一代手機(jī)系統(tǒng)的無線接入研究工作。他在無線通信領(lǐng)域擁有20多項(xiàng)專利,由于工作業(yè)績突出,曾榮獲IEEE運(yùn)載工具技術(shù)學(xué)會(huì)授予的Jack Neubauer獎(jiǎng)以及愛立信研究院授予的年度發(fā)明家獎(jiǎng)。
圖書目錄
Part Ⅰ: Introduction 1 Background of 3G evolution 3 1.1 History and background of 3G 3 1.1.1 Before 3G 3 1.1.2 Early 3G discussions 5 1.1.3 Research on 3G 6 1.1.4 3G standardization starts 7 1.2 Standardization 7 1.2.1 The standardization process 7 1.2.2 3GPP 9 1.2.3 IMT-2000 activities in ITU 11 1.3 Spectrum for 3G and systems beyond 3G 13 2 The motives behind the 3G evolution 15 2.1 Driving forces 15 2.1.1 Technology advancements 16 2.1.2 Services 17 2.1.3 Cost and performance 20 2.2 3G evolution: Two Radio Access Network approaches and an evolved core network 21 2.2.1 Radio Access Network evolution 21 2.2.2 An evolved core network: system architecture evolution 24 Part Ⅱ: Technologies for 3G Evolution 3 High data rates in mobile communication 29 3.1 High data rates: Fundamental constraints 29 3.1.1 High data rates in noise-limited scenarios 31 3.1.2 Higher data rates in interference-limited scenarios 33 3.2 Higher data rates within a limited bandwidth: Higher-order modulation 34 3.2.1 Higher-order modulation in combination with channel coding 35 3.2.2 Variations in instantaneous transmit power 36 3.3 Wider bandwidth including multi-carrier transmission 37 3.3.1 Multi-carrier transmission 40 4 OFDM transmission 43 4.1 Basic principles of OFDM 43 4.2 OFDM demodulation 46 4.3 OFDM implementation using IFFT/FFT processing 46 4.4 Cyclic-prefix insertion 48 4.5 Frequency-domain model of OFDM transmission 51 4.6 Channel estimation and reference symbols 52 4.7 Frequency diversity with OFDM: Importance of channel coding 53 4.8 Selection of basic OFDM parameters 55 4.8.1 OFDM subcarrier spacing 55 4.8.2 Number of subcarriers 57 4.8.3 Cyclic-prefix length 58 4.9 Variations in instantaneous transmission power 58 4.10 OFDM as a user-multiplexing and multiple-access scheme 59 4.11 Multi-cell broadcast/multicast transmission and OFDM 61 5 Wider-band ‘single-carrier’ transmission 65 5.1 Equalization against radio-channel frequency selectivity 65 5.1.1 Time-domain linear equalization 66 5.1.2 Frequency-domain equalization 68 5.1.3 Other equalizer strategies 71 5.2 Uplink FDMA with flexible bandwidth assignment 71 5.3 DFT-spread OFDM 73 5.3.1 Basic principles 74 5.3.2 DFTS-OFDM receiver 76 5.3.3 User multiplexing with DFTS-OFDM 77 5.3.4 Distributed DFTS-OFDM 78 6 Multi-antenna techniques 81 6.1 Multi-antenna configurations 81 6.2 Benefits of multi-antenna techniques 82 6.3 Multiple receive antennas 83 6.4 Multiple transmit antennas 88 6.4.1 Transmit-antenna diversity 89 6.4.2 Transmitter-side beam-forming 93 6.5 Spatial multiplexing 96 6.5.1 Basic principles 97 6.5.2 Pre-coder-based spatial multiplexing 100 6.5.3 Non-linear receiver processing 102 7 Scheduling, link adaptation and hybrid ARQ 105 7.1 Link adaptation: Power and rate control 106 7.2 Channel-dependent scheduling 107 7.2.1 Downlink scheduling 108 7.2.2 Uplink scheduling 112 7.2.3 Link adaptation and channel-dependent scheduling in the frequency domain 115 7.2.4 Acquiring on channel-state information 116 7.2.5 Traffic behavior and scheduling 117 7.3 Advanced retransmission schemes 118 7.4 Hybrid ARQ with soft combining 120 Part Ⅲ: HSPA 8 WCDMA evolution: HSPA and MBMS 127 8.1 WCDMA: Brief overview 129 8.1.1 Overall architecture 129 8.1.2 Physical layer 132 8.1.3 Resource handling and packet-data session 137 9 High-Speed Downlink Packet Access 139 9.1 Overview 139 9.1.1 Shared-channel transmission 139 9.1.2 Channel-dependent scheduling 140 9.1.3 Rate control and higher-order modulation 142 9.1.4 Hybrid ARQ with soft combining 142 9.1.5 Architecture 143 9.2 Details of HSDPA 144 9.2.1 HS-DSCH: Inclusion of features in WCDMA Release 5 144 9.2.2 MAC-hs and physical-layer processing 147 9.2.3 Scheduling 149 9.2.4 Rate control 150 9.2.5 Hybrid ARQ with soft combining 154 9.2.6 Data flow 157 9.2.7 Resource control for HS-DSCH 159 9.2.8 Mobility 160 9.2.9 UE categories 162 9.3 Finer details of HSDPA 162 9.3.1 Hybrid ARQ revisited: Physical-layer processing 162 9.3.2 Interleaving and constellation rearrangement 167 9.3.3 Hybrid ARQ revisited: Protocol operation 168 9.3.4 In-sequence delivery 170 9.3.5 MAC-hs header 172 9.3.6 CQI and other means to assess the downlink quality 174 9.3.7 Downlink control signaling: HS-SCCH 177 9.3.8 Downlink control signaling: F-DPCH 180 9.3.9 Uplink control signaling: HS-DPCCH 180 10 Enhanced Uplink 185 10.1 Overview 185 10.1.1 Scheduling 186 10.1.2 Hybrid ARQ with soft combining 188 10.1.3 Architecture 189 10.2 Details of Enhanced Uplink 190 10.2.1 MAC-e and physical layer processing 193 10.2.2 Scheduling 195 10.2.3 E-TFC selection 202 10.2.4 Hybrid ARQ with soft combining 203 10.2.5 Physical channel allocation 208 10.2.6 Power control 210 10.2.7 Data flow 211 10.2.8 Resource control for E-DCH 212 10.2.9 Mobility 213 10.2.10 UE categories 213 10.3 Finer details of Enhanced Uplink 214 10.3.1 Scheduling - the small print 214 10.3.2 Further details on hybrid ARQ operation 223 10.3.3 Control signaling 230 11 MBMS: Multimedia Broadcast Multicast Services 239 11.1 Overview 242 11.1.1 Macro-diversity 243 11.1.2 Application-level coding 245 11.2 Details of MBMS 246 11.2.1 MTCH 247 11.2.2 MCCH and MICH 247 11.2.3 MSCH 249 12 HSPA Evolution 251 12.1 MIMO 251 12.1.1 HSDPA-MIMO data transmission 252 12.1.2 Rate control for HSDPA-MIMO 256 12.1.3 Hybrid-ARQ with soft combining for HSDPA-MIMO 256 12.1.4 Control signaling for HSDPA-MIMO 257 12.1.5 UE capabilities 259 12.2 Higher-order modulation. 259 12.3 Continuous packet connectivity 260 12.3.1 DTX–reducing uplink overhead 261 12.3.2 DRX–reducing UE power consumption 264 12.3.3 HS-SCCH-less operation: downlink overhead reduction 265 12.3.4 Control signaling 267 12.4 Enhanced CELL_FACH operation 267 12.5 Layer 2 protocol enhancements 269 12.6 Advanced receivers 270 12.6.1 Advanced UE receivers specified in 3GPP 271 12.6.2 Receiver diversity (type 1) 271 12.6.3 Chip-level equalizers and similar receivers (type 2) 272 12.6.4 Combination with antenna diversity (type 3) 273 12.6.5 Combination with antenna diversity and interference cancellation (type 3i) 274 12.7 MBSFN operation 275 12.8 Conclusion 275 Part Ⅳ: LTE and SAE 13 LTE and SAE: Introduction and design targets 279 13.1 LTE design targets 280 13.1.1 Capabilities 281 13.1.2 System performance 282 13.1.3 Deployment-related aspects 283 13.1.4 Architecture and migration 285 13.1.5 Radio resource management 286 13.1.6 Complexity 286 13.1.7 General aspects 286 13.2 SAE design targets 287 14 LTE radio access: An overview 289 14.1 LTE transmission schemes: Downlink OFDM and uplink DFTS-OFDM/SC-FDMA 289 14.2 Channel-dependent scheduling and rate adaptation 291 14.2.1 Downlink scheduling 292 14.2.2 Uplink scheduling 292 14.2.3 Inter-cell interference coordination 293 14.3 Hybrid ARQ with soft combining 294 14.4 Multiple antenna support 294 14.5 Multicast and broadcast support 295 14.6 Spectrum flexibility 296 14.6.1 Flexibility in duplex arrangement 296 14.6.2 Flexibility in frequency-band-of-operation 297 14.6.3 Bandwidth flexibility 297 15 LTE radio interface architecture 299 15.1 Radio link control 301 15.2 Medium access control 302 15.2.1 Logical channels and transport channels 303 15.2.2 Scheduling 305 15.2.3 Hybrid ARQ with soft combining 308 15.3 Physical layer 311 15.4 Terminal states 314 15.5 Data flow 315 16 Downlink transmission scheme 317 16.1 Overall time-domain structure and duplex alternatives 317 16.2 The downlink physical resource 319 16.3 Downlink reference signals 324 16.3.1 Cell-specific downlink reference signals 325 16.3.2 UE-specific reference signals 328 16.4 Downlink L1/L2 control signaling 330 16.4.1 Physical Control Format Indicator Channel 332 16.4.2 Physical Hybrid-ARQ Indicator Channel 334 16.4.3 Physical Downlink Control Channel 338 16.4.4 Downlink scheduling assignment 340 16.4.5 Uplink scheduling grants 348 16.4.6 Power-control commands 352 16.4.7 PDCCH processing 352 16.4.8 Blind decoding of PDCCHs 357 16.5 Downlink transport-channel processing 361 16.5.1 CRC insertion per transport block 361 16.5.2 Code-block segmentation and per-code-block CRC insertion 362 16.5.3 Turbo coding 363 16.5.4 Rate-matching and physical-layer hybrid-ARQ functionality 365 16.5.5 Bit-level scrambling 366 16.5.6 Data modulation 366 16.5.7 Antenna mapping 367 16.5.8 Resource-block mapping 367 16.6 Multi-antenna transmission 371 16.6.1 Transmit diversity 372 16.6.2 Spatial multiplexing 373 16.6.3 General beam-forming 377 16.7 MBSFN transmission and MCH 378 17 Uplink transmission scheme 383 17.1 The uplink physical resource 383 17.2 Uplink reference signals 385 17.2.1 Uplink demodulation reference signals 385 17.2.2 Uplink sounding reference signals 393 17.3 Uplink L1/L2 control signaling 396 17.3.1 Uplink L1/L2 control signaling on PUCCH 398 17.3.2 Uplink L1/L2 control signaling on PUSCH 411 17.4 Uplink transport-channel processing 413 17.5 PUSCH frequency hopping 415 17.5.1 Hopping based on cell-specific hopping/mirroring patterns 416 17.5.2 Hopping based on explicit hopping information 418 18 LTE access procedures 421 18.1 Acquisition and cell search 421 18.1.1 Overview of LTE cell search 421 18.1.2 PSS structure 424 18.1.3 SSS structure 424 18.2 System information 425 18.2.1 MIB and BCH transmission 426 18.2.2 System-Information Blocks 429 18.3 Random access 432 18.3.1 Step 1: Random-access preamble transmission 434 18.3.2 Step 2: Random-access response 441 18.3.3 Step 3: Terminal identification 442 18.3.4 Step 4: Contention resolution 443 18.4 Paging 444 19 LTE transmission procedures 447 19.1 RLC and hybrid-ARQ protocol operation 447 19.1.1 Hybrid-ARQ with soft combining 448 19.1.2 Radio-link control 459 19.2 Scheduling and rate adaptation 465 19.2.1 Downlink scheduling 467 19.2.2 Uplink scheduling 470 19.2.3 Semi-persistent scheduling 476 19.2.4 Scheduling for half-duplex FDD 478 19.2.5 Channel-status reporting 479 19.3 Uplink power control 482 19.3.1 Power control for PUCCH 482 19.3.2 Power control for PUSCH 485 19.3.3 Power control for SRS 488 19.4 Discontinuous reception (DRX) 488 19.5 Uplink timing alignment 490 19.6 UE categories 495 20 Flexible bandwidth in LTE 497 20.1 Spectrum for LTE 497 20.1.1 Frequency bands for LTE 498 20.1.2 New frequency bands 501 20.2 Flexible spectrum use 502 20.3 Flexible channel bandwidth operation 503 20.4 Requirements to support flexible bandwidth 505 20.4.1 RF requirements for LTE 505 20.4.2 Regional requirements 506 20.4.3 BS transmitter requirements 507 20.4.4 BS receiver requirements 511 20.4.5 Terminal transmitter requirements 514 20.4.6 Terminal receiver requirements 515 21 System Architecture Evolution 517 21.1 Functional split between radio access network and core network 518 21.1.1 Functional split between WCDMA/HSPA radio access network and core network 518 21.1.2 Functional split between LTE RAN and core network 519 21.2 HSPA/WCDMA and LTE radio access network 520 21.2.1 WCDMA/HSPA radio access network 521 21.2.2 LTE radio access network 526 21.3 Core network architecture 528 21.3.1 GSM core network used for WCDMA/HSPA 529 21.3.2 The ‘SAE’ core network: The Evolved Packet Core 533 21.3.3 WCDMA/HSPA connected to Evolved Packet Core 536 21.3.4 Non-3GPP access connected to Evolved Packet Core 537 22 LTE-Advanced 539 22.1 IMT-2000 development 539 22.2 LTE-Advanced – The 3GPP candidate for IMT-Advanced 540 22.2.1 Fundamental requirements for LTE-Advanced 541 22.2.2 Extended requirements beyond ITU requirements 542 22.3 Technical components of LTE-Advanced 542 22.3.1 Wider bandwidth and carrier aggregation 543 22.3.2 Extended multi-antenna solutions 544 22.3.3 Advanced repeaters and relaying functionality 545 22.4 Conclusion 546 Part Ⅴ: Performance and Concluding Remarks 23 Performance of 3G evolution 549 23.1 Performance assessment 549 23.1.1 End-user perspective of performance 550 23.1.2 Operator perspective 552 23.2 Performance in terms of peak data rates 552 23.3 Performance evaluation of 3G evolution 553 23.3.1 Models and assumptions 553 23.3.2 Performance numbers for LTE with 5 MHz FDD carriers 555 23.4 Evaluation of LTE in 3GPP 557 23.4.1 LTE performance requirements 557 23.4.2 LTE performance evaluation 559 23.4.3 Performance of LTE with 20 MHz FDD carrier 560 23.5 Conclusion 560 24 Other wireless communications systems 563 24.1 UTRA TDD 563 24.2 TD-SCDMA (low chip rate UTRA TDD) 565 24.3 CDMA2000 566 24.3.1 CDMA2000 1x 567 24.3.2 1x EV-DO Rev 0 567 24.3.3 1x EV-DO Rev A 568 24.3.4 1x EV-DO Rev B 569 24.3.5 UMB (1x EV-DO Rev C) 571 24.4 GSM/EDGE 573 24.4.1 Objectives for the GSM/EDGE evolution 573 24.4.2 Dual-antenna terminals 575 24.4.3 Multi-carrier EDGE 575 24.4.4 Reduced TTI and fast feedback 576 24.4.5 Improved modulation and coding 577 24.4.6 Higher symbol rates 577 24.5 WiMAX (IEEE 802.16) 578 24.5.1 Spectrum, bandwidth options and duplexing arrangement 580 24.5.2 Scalable OFDMA 581 24.5.3 TDD frame structure 581 24.5.4 Modulation, coding and Hybrid ARQ 581 24.5.5 Quality-of-service handling 582 24.5.6 Mobility 583 24.5.7 Multi-antenna technologies 584 24.5.8 Fractional frequency reuse 584 24.5.9 Advanced Air Interface (IEEE 802.16m) 585 24.6 Mobile Broadband Wireless Access (IEEE 802.20) 586 24.7 Summary 588 25 Future evolution 589 25.1 IMT-Advanced 590 25.2 The research community 591 25.3 Standardization bodies 591 25.4 Concluding remarks 592 References 593 Index 603