注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)計(jì)算機(jī)/網(wǎng)絡(luò)軟件與程序設(shè)計(jì)C/C++及其相關(guān)數(shù)字圖像處理與機(jī)器視覺:Visual C++與Matlab實(shí)現(xiàn)

數(shù)字圖像處理與機(jī)器視覺:Visual C++與Matlab實(shí)現(xiàn)

數(shù)字圖像處理與機(jī)器視覺:Visual C++與Matlab實(shí)現(xiàn)

定 價(jià):¥69.00

作 者: 張錚,王艷平,薛桂香 編著
出版社: 人民郵電出版社
叢編項(xiàng):
標(biāo) 簽: VC++

ISBN: 9787115220233 出版時(shí)間: 2010-04-01 包裝: 平裝
開本: 16開 頁數(shù): 544 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  《數(shù)字圖像處理與機(jī)器視覺:Visual C++與Matlab實(shí)現(xiàn)》將理論知識(shí)、科學(xué)研究和工程實(shí)踐有機(jī)結(jié)合起來,介紹了數(shù)字圖像處理和識(shí)別技術(shù)的方方面面,內(nèi)容包括圖像的點(diǎn)運(yùn)算、幾何變換、空域和頻域?yàn)V波、圖像復(fù)原、形態(tài)學(xué)處理、圖像分割以及圖像特征提取。《數(shù)字圖像處理與機(jī)器視覺:Visual C++與Matlab實(shí)現(xiàn)》還對(duì)于機(jī)器視覺進(jìn)行了前導(dǎo)性的探究,重點(diǎn)介紹了兩種在工程技術(shù)領(lǐng)域非常流行的分類技術(shù)——人工神經(jīng)網(wǎng)絡(luò)(ANN)和支持向量機(jī)(SVM),并在配套給出的識(shí)別案例中直擊光學(xué)字符識(shí)別(OCR)和人臉識(shí)別兩大熱點(diǎn)問題。全書結(jié)構(gòu)緊湊,內(nèi)容深入淺出,講解圖文并茂,適合于計(jì)算機(jī)、通信和自動(dòng)化等相關(guān)專業(yè)的本科生、研究生以及工作在圖像處理和識(shí)別領(lǐng)域一線的廣大工程技術(shù)人員閱讀。

作者簡(jiǎn)介

暫缺《數(shù)字圖像處理與機(jī)器視覺:Visual C++與Matlab實(shí)現(xiàn)》作者簡(jiǎn)介

圖書目錄

第0章 數(shù)字圖像處理概述 1
0.1 數(shù)字圖像 1
0.1.1 什么是數(shù)字圖像 1
0.1.2 數(shù)字圖像的顯示 1
0.1.3 數(shù)字圖像的分類 2
0.1.4 數(shù)字圖像的實(shí)質(zhì) 3
0.1.5 數(shù)字圖像的表示 4
0.1.6 圖像的空間和灰度級(jí)分辨率 5
0.2 數(shù)字圖像處理與識(shí)別 6
0.2.1 從圖像處理到圖像識(shí)別 6
0.2.2 什么是機(jī)器視覺 8
0.2.3 數(shù)字圖像處理和識(shí)別的應(yīng)用實(shí)例 8
0.3 數(shù)字圖像處理的預(yù)備知識(shí) 8
0.3.1 鄰接性、連通性、區(qū)域和邊界 8
0.3.2 距離度量的幾種方法 10
0.3.3 基本的圖像操作 10
第1章 MATLAB圖像處理編程基礎(chǔ) 12
1.1 Matlab操作簡(jiǎn)介 12
1.1.1 Matlab軟件環(huán)境 12
1.1.2 文件操作 13
1.1.3 在線幫助的使用 14
1.1.4 變量的使用 16
1.1.5 矩陣的使用 18
1.1.6 細(xì)胞數(shù)組(Cell Array)和結(jié)構(gòu)體(Structure) 21
1.1.7 關(guān)系運(yùn)算與邏輯運(yùn)算 22
1.1.8 常用圖像處理數(shù)學(xué)函數(shù) 22
1.1.9 Matlab程序流程控制 23
1.1.10 M文件編寫 27
1.1.11 Matlab函數(shù)編寫 28
1.2 Matlab圖像類型及其存儲(chǔ)方式 29
1.3 Matlab的圖像轉(zhuǎn)換 33
1.4 讀取和寫入圖像文件 35
1.5 圖像的顯示 37
第2章 Visual C++圖像處理編程基礎(chǔ) 39
2.1 位圖文件及其C++操作 39
2.1.1 設(shè)備無關(guān)位圖 39
2.1.2 BMP圖像文件數(shù)據(jù)結(jié)構(gòu) 39
2.2 認(rèn)識(shí)CImg類 42
2.2.1 主要成員函數(shù)列表 42
2.2.2 公有成員 43
2.3 CImg類基礎(chǔ)操作 44
2.3.1 加載和寫入圖像 44
2.3.2 獲得圖像基本信息 47
2.3.3 檢驗(yàn)有效性 48
2.3.4 按像素操作 49
2.3.5 改變圖像大小 50
2.3.6 重載的運(yùn)算符 51
2.3.7 在屏幕上繪制位圖圖像 51
2.3.8 新建圖像 52
2.3.9 圖像類型的判斷與轉(zhuǎn)化 54
2.4 DIPDemo工程 55
2.4.1 DIPDemo主界面 55
2.4.2 圖像操作和處理類——CImg和CImgProcess 56
2.4.3 文檔類——CDIPDemoDoc 57
2.4.4 視圖類——CDIPDemoView 58
2.5 CImg應(yīng)用示例 58
2.5.1 打開圖像 58
2.5.2 清空?qǐng)D像 60
2.5.3 像素初始化方法 61
2.5.4 保存圖像 61
第3章 圖像的點(diǎn)運(yùn)算 63
3.1 灰度直方圖 63
3.1.1 理論基礎(chǔ) 63
3.1.2 Matlab實(shí)現(xiàn) 64
3.1.3 Visual C++實(shí)現(xiàn) 67
3.2 灰度的線性變換 69
3.2.1 理論基礎(chǔ) 69
3.2.2 Matlab實(shí)現(xiàn) 70
3.2.3 Visual C++實(shí)現(xiàn) 72
3.3 灰度對(duì)數(shù)變換 73
3.3.1 理論基礎(chǔ) 74
3.3.2 Matlab實(shí)現(xiàn) 74
3.3.3 Visual C++實(shí)現(xiàn) 75
3.4 伽瑪變換 76
3.4.1 理論基礎(chǔ) 76
3.4.2 Matlab實(shí)現(xiàn) 77
3.4.3 Visual C++實(shí)現(xiàn) 79
3.5 灰度閾值變換 80
3.5.1 理論基礎(chǔ) 80
3.5.2 Matlab實(shí)現(xiàn) 81
3.5.3 Visual C++實(shí)現(xiàn) 82
3.6 分段線性變換 83
3.6.1 理論基礎(chǔ) 83
3.6.2 Matlab實(shí)現(xiàn) 84
3.6.3 Visual C++實(shí)現(xiàn) 88
3.7 直方圖均衡化 90
3.7.1 理論基礎(chǔ) 90
3.7.2 Matlab實(shí)現(xiàn) 91
3.7.3 Visual C++實(shí)現(xiàn) 93
3.8 直方圖規(guī)定化(匹配) 94
3.8.1 理論基礎(chǔ) 95
3.8.2 Matlab實(shí)現(xiàn) 95
3.8.3 Visual C++實(shí)現(xiàn) 97
第4章 圖像的幾何變換 101
4.1 解決幾何變換的一般思路 101
4.2 圖像平移 103
4.2.1 圖像平移的變換公式 103
4.2.2 圖像平移的實(shí)現(xiàn) 104
4.3 圖像鏡像 106
4.3.1 圖像鏡像的變換公式 106
4.3.2 圖像鏡像的實(shí)現(xiàn) 106
4.4 圖像轉(zhuǎn)置 109
4.4.1 圖像轉(zhuǎn)置的變換公式 110
4.4.2 圖像轉(zhuǎn)置的實(shí)現(xiàn) 110
4.5 圖像縮放 111
4.5.1 圖像縮放的變換公式 112
4.5.2 圖像縮放的實(shí)現(xiàn) 112
4.6 圖像旋轉(zhuǎn) 114
4.6.1 以原點(diǎn)為中心的圖像旋轉(zhuǎn) 114
4.6.2 以任意點(diǎn)為中心的圖像旋轉(zhuǎn) 115
4.6.3 圖像旋轉(zhuǎn)的實(shí)現(xiàn) 116
4.7 插值算法 118
4.7.1 最近鄰插值 118
4.7.2 雙線性插值及其Visual C++實(shí)現(xiàn) 119
4.7.3 高階插值 121
4.8 圖像配準(zhǔn) 124
4.8.1 什么是圖像配準(zhǔn) 124
4.8.2 人臉圖像配準(zhǔn)的Matlab實(shí)現(xiàn) 124
4.9 Visual C++實(shí)用案例——汽車牌照的投影失真校正 128
4.9.1 系統(tǒng)分析與設(shè)計(jì) 129
4.9.2 系統(tǒng)實(shí)現(xiàn) 130
4.9.3 功能測(cè)試 136
第5章 空間域圖像增強(qiáng) 140
5.1 圖像增強(qiáng)基礎(chǔ) 140
5.1.1 為什么要進(jìn)行圖像增強(qiáng) 140
5.1.2 圖像增強(qiáng)的分類 140
5.2 空間域?yàn)V波 141
5.2.1 空間域?yàn)V波和鄰域處理 141
5.2.2 邊界處理 142
5.2.3 相關(guān)和卷積 143
5.2.4 濾波操作的Matlab實(shí)現(xiàn) 143
5.2.5 濾波操作的Visual C++實(shí)現(xiàn) 146
5.3 圖像平滑 148
5.3.1 平均模板及其實(shí)現(xiàn) 148
5.3.2 高斯平滑及其實(shí)現(xiàn) 151
5.3.3 通用平滑濾波的Visual C++實(shí)現(xiàn) 154
5.3.4 自適應(yīng)平滑濾波 156
5.4 中值濾波 156
5.4.1 性能比較 156
5.4.2 一種改進(jìn)的中值濾波策略 161
5.4.3 中值濾波的工作原理 162
5.5 圖像銳化 162
5.5.1 理論基礎(chǔ) 162
5.5.2 基于一階導(dǎo)數(shù)的圖像增強(qiáng)——梯度算子 163
5.5.3 基于二階微分的圖像增強(qiáng)——拉普拉斯算子 167
5.5.4 基于一階與二階導(dǎo)數(shù)的銳化算子的比較 169
5.5.5 高提升濾波及其實(shí)現(xiàn) 171
5.5.6 高斯-拉普拉斯變換(Laplacian of a Gaussian, LoG) 175
第6章 頻率域圖像增強(qiáng) 178
6.1 頻率域?yàn)V波——與空間域?yàn)V波殊途同歸 178
6.2 傅立葉變換基礎(chǔ)知識(shí) 178
6.2.1 傅立葉級(jí)數(shù) 179
6.2.2 傅立葉變換 181
6.2.3 幅度譜、相位譜和功率譜 183
6.2.4 傅立葉變換的實(shí)質(zhì)——基的轉(zhuǎn)換 185
6.3 快速傅立葉變換(Fast Fourier Transform,F(xiàn)FT)及實(shí)現(xiàn) 187
6.3.1 FFT變換的必要性 187
6.3.2 常見的FFT算法 188
6.3.3 按時(shí)間抽取的基-2 FFT算法 188
6.3.4 離散反傅立葉變換的快速算法(IFFT) 192
6.3.5 N維快速傅里葉變換(FFTN) 192
6.3.6 Matlab實(shí)現(xiàn) 192
6.3.7 Visual C++實(shí)現(xiàn) 198
6.4 頻域?yàn)V波基礎(chǔ) 206
6.4.1 頻域?yàn)V波與空域?yàn)V波的關(guān)系 206
6.4.2 頻域?yàn)V波的基本步驟 206
6.4.3 頻域?yàn)V波的Matlab實(shí)現(xiàn) 207
6.4.4 頻域?yàn)V波的Visual C++實(shí)現(xiàn) 208
6.5 頻域低通濾波器 210
6.5.1 理想低通濾波器及其實(shí)現(xiàn) 210
6.5.2 高斯低通濾波器及其實(shí)現(xiàn) 215
6.6 頻率域高通濾波器 220
6.6.1 高斯高通濾波器及其實(shí)現(xiàn) 220
6.6.2 頻域拉普拉斯濾波器及其實(shí)現(xiàn) 224
6.7 Matlab綜合案例——利用頻域?yàn)V波消除周期噪聲 227
6.7.1 頻域帶阻濾波器 227
6.7.2 帶阻濾波消除周期噪聲 229
6.8 頻域?yàn)V波器與空域?yàn)V波器之間的內(nèi)在聯(lián)系 232
第7章 彩色圖像處理 233
7.1 彩色基礎(chǔ) 233
7.1.1 什么是彩色 233
7.1.2 我們眼中的彩色 234
7.1.3 三原色 234
7.1.4 計(jì)算機(jī)中的顏色表示 235
7.2 彩色模型 236
7.2.1 RGB模型 236
7.2.2 CMY、CMYK模型 238
7.2.3 HSI模型 241
7.2.4 HSV模型 249
7.2.5 YUV模型 254
7.2.6 YIQ模型 260
7.2.7 Lab模型簡(jiǎn)介 264
7.3 全彩色圖像處理基礎(chǔ) 264
7.3.1 彩色補(bǔ)償及其Matlab實(shí)現(xiàn) 265
7.3.2 彩色平衡及其Matlab實(shí)現(xiàn) 267
第8章 形態(tài)學(xué)圖像處理 270
8.1 預(yù)備知識(shí) 270
8.2 二值圖像中的基本形態(tài)學(xué)運(yùn)算 272
8.2.1 腐蝕及其實(shí)現(xiàn) 273
8.2.2 膨脹及其實(shí)現(xiàn) 280
8.2.3 開運(yùn)算及其實(shí)現(xiàn) 284
8.2.4 閉運(yùn)算及其實(shí)現(xiàn) 287
8.3 二值圖像中的形態(tài)學(xué)應(yīng)用 289
8.3.1 擊中與擊不中變換及其實(shí)現(xiàn) 289
8.3.2 邊界提取與跟蹤及其實(shí)現(xiàn) 291
8.3.3 區(qū)域填充及其Visual C++實(shí)現(xiàn) 296
8.3.4 連通分量提取及其實(shí)現(xiàn) 299
8.3.5 細(xì)化算法及其Visual C++實(shí)現(xiàn) 305
8.3.6 像素化算法及其Visual C++實(shí)現(xiàn) 310
8.3.7 凸殼及其Visual C++實(shí)現(xiàn) 316
8.3.8 bwmorph函數(shù) 319
8.4 灰度圖像中的基本形態(tài)學(xué)運(yùn)算 320
8.4.1 灰度膨脹及其實(shí)現(xiàn) 320
8.4.2 灰度腐蝕及其實(shí)現(xiàn) 324
8.4.3 灰度開、閉運(yùn)算及其實(shí)現(xiàn) 328
8.4.4 頂帽變換(top-hat)及其實(shí)現(xiàn) 331
8.5 小結(jié) 334
第9章 圖像分割 335
9.1 圖像分割概述 335
9.2 邊緣檢測(cè) 336
9.2.1 邊緣檢測(cè)概述 336
9.2.2 常用的邊緣檢測(cè)算子 337
9.2.3 Matlab實(shí)現(xiàn) 340
9.2.4 Visual C++實(shí)現(xiàn) 343
9.3 霍夫變換 350
9.3.1 直線檢測(cè) 350
9.3.2 曲線檢測(cè) 352
9.3.3 任意形狀的檢測(cè) 353
9.3.4 Hough變換直線檢測(cè)的Matlab實(shí)現(xiàn) 354
9.3.5 Hough變換直線檢測(cè)的Visual C++實(shí)現(xiàn) 357
9.4 閾值分割 361
9.4.1 閾值分割方法 361
9.4.2 Matlab實(shí)現(xiàn) 364
9.4.3 Visual C++實(shí)現(xiàn) 366
9.5 區(qū)域分割 368
9.5.1 區(qū)域生長及其實(shí)現(xiàn) 368
9.5.2 區(qū)域分裂與合并及其Matlab實(shí)現(xiàn) 373
9.6 小結(jié) 378
第10章 特征提取 379
10.1 圖像特征概述 379
10.1.1 什么是圖像特征 379
10.1.2 圖像特征的分類 379
10.1.3 特征向量及其幾何解釋 379
10.1.4 特征提取的一般原則 380
10.1.5 特征的評(píng)價(jià)標(biāo)準(zhǔn) 381
10.2 基本統(tǒng)計(jì)特征 381
10.2.1 簡(jiǎn)單的區(qū)域描繪子及其Matlab實(shí)現(xiàn) 381
10.2.2 直方圖及其統(tǒng)計(jì)特征 383
10.2.3 灰度共現(xiàn)矩陣及其Visual C++實(shí)現(xiàn) 385
10.3 特征降維 388
10.3.1 維度災(zāi)難 388
10.3.2 特征選擇簡(jiǎn)介 389
10.3.3 主成份分析(Principal Component Analysis,PCA) 390
10.3.4 快速PCA及其實(shí)現(xiàn) 397
10.4 綜合案例——基于PCA的人臉特征抽取 399
10.4.1 數(shù)據(jù)集簡(jiǎn)介 399
10.4.2 生成樣本矩陣 400
10.4.3 主成份分析 401
10.4.4 主成份臉可視化分析 402
10.4.5 基于主分量的人臉重建 404
10.5 局部二進(jìn)制模式 406
10.5.1 基本LBP 406
10.5.2 圓形鄰域的LBPP,R算子 407
10.5.3 統(tǒng)一化LBP算子——Uniform LBP及其Matlab實(shí)現(xiàn) 407
10.5.4 MB-LBP及其Matlab實(shí)現(xiàn) 411
10.5.5 圖像分區(qū)及其Matlab實(shí)現(xiàn) 417
第11章 圖像識(shí)別初步 421
11.1 模式識(shí)別概述 421
11.1.1 模式與模式識(shí)別 421
11.1.2 圖像識(shí)別 422
11.1.3 關(guān)鍵概念 422
11.1.4 識(shí)別問題的一般描述 423
11.1.5 過度擬合(Overfit) 424
11.1.6 模式識(shí)別系統(tǒng)結(jié)構(gòu) 425
11.1.7 訓(xùn)練/學(xué)習(xí)方法分類 425
11.2 模式識(shí)別方法分類 426
11.2.1 統(tǒng)計(jì)模式識(shí)別 426
11.2.2 句法模式識(shí)別 426
11.2.3 小結(jié) 427
11.3 最小距離分類器和模板匹配 428
11.3.1 最小距離分類器及其Matlab實(shí)現(xiàn) 428
11.3.2 基于相關(guān)的模板匹配 430
11.3.3 相關(guān)匹配的計(jì)算效率 436
第12章 人工神經(jīng)網(wǎng)絡(luò) 438
12.1 人工神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介 438
12.1.1 仿生學(xué)動(dòng)機(jī) 438
12.1.2 人工神經(jīng)網(wǎng)絡(luò)的應(yīng)用實(shí)例 440
12.2 人工神經(jīng)網(wǎng)絡(luò)的理論基礎(chǔ) 441
12.2.1 訓(xùn)練線性單元的梯度下降算法 441
12.2.2 多層人工神經(jīng)網(wǎng)絡(luò) 447
12.2.3 sigmoid單元 448
12.2.4 反向傳播(BP,Back Propogation)算法 450
12.2.5 訓(xùn)練中的問題 453
12.3 基于ANN的數(shù)字字符識(shí)別系統(tǒng)DigitRec——分析與設(shè)計(jì) 454
12.3.1 任務(wù)描述 454
12.3.2 數(shù)據(jù)集簡(jiǎn)介 455
12.3.3 設(shè)計(jì)要點(diǎn) 455
12.4 基于ANN的數(shù)字字符識(shí)別系統(tǒng)DigitRec——實(shí)現(xiàn) 457
12.4.1 構(gòu)建神經(jīng)元結(jié)構(gòu)——SNeuron 457
12.4.2 構(gòu)建神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)層——SNeuronLayer 459
12.4.3 神經(jīng)網(wǎng)絡(luò)信息頭——NEURALNET_HEADER 460
12.4.4 神經(jīng)網(wǎng)絡(luò)類——CNeuralNet 460
12.4.5 神經(jīng)網(wǎng)絡(luò)的訓(xùn)練數(shù)據(jù)類——CNeural Data 473
12.4.6 誤差跟蹤類——CValueTrack 478
12.4.7 訓(xùn)練對(duì)話框類——CTrainDlg 481
12.4.8 測(cè)試對(duì)話框類——CTestDlg 484
12.5 基于ANN的數(shù)字字符識(shí)別系統(tǒng)DigitRec——測(cè)試 487
12.5.1 訓(xùn)練 488
12.5.2 測(cè)試 489
12.6 改進(jìn)的DigitRec 490
12.6.1 數(shù)字字符圖像的預(yù)處理類——COCRImage Process 490
12.6.2 輸入圖像的預(yù)處理——實(shí)現(xiàn) 491
12.6.3 輸入圖像的預(yù)處理——測(cè)試 504
12.7 神經(jīng)網(wǎng)絡(luò)參數(shù)對(duì)訓(xùn)練和識(shí)別的影響 506
12.7.1 隱藏層單元數(shù)目的影響 506
12.7.2 學(xué)習(xí)率的影響 508
12.7.3 訓(xùn)練時(shí)代數(shù)目的影響 508
第13章 支持向量機(jī) 511
13.1 支持向量機(jī)的分類思想 511
13.1.1 分類模型的選擇 511
13.1.2 模型參數(shù)的選擇 512
13.2 支持向量機(jī)的理論基礎(chǔ) 512
13.2.1 線性可分情況下的SVM 512
13.2.2 非線性可分情況下的C-SVM 516
13.2.3 需要核函數(shù)映射情況下的SVM 518
13.2.4 推廣到多類問題 521
13.3 SVM的Matlab實(shí)現(xiàn) 523
13.3.1 訓(xùn)練——svmtrain 523
13.3.2 分類——svmclassify 525
13.3.3 應(yīng)用實(shí)例 526
13.4 綜合案例——基于PCA和SVM的人臉識(shí)別系統(tǒng) 526
13.4.1 人臉識(shí)別簡(jiǎn)介 527
13.4.2 前期處理 527
13.4.3 數(shù)據(jù)規(guī)格化(Scaling) 528
13.4.4 核函數(shù)的選擇 531
13.4.5 參數(shù)選擇 532
13.4.6 構(gòu)建多類SVM分類器 535
13.4.7 實(shí)驗(yàn)結(jié)果 537

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)