注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書經(jīng)濟管理經(jīng)濟財政、金融保險精算模型:壽險和年金(英文版)

精算模型:壽險和年金(英文版)

精算模型:壽險和年金(英文版)

定 價:¥59.00

作 者: 朱彥云 著
出版社: 高等教育出版社
叢編項:
標 簽: 科普 英文版 英語讀物 英語與其他外語

ISBN: 9787040224689 出版時間: 2008-01-01 包裝: 平裝
開本: 16開 頁數(shù): 341 字數(shù):  

內(nèi)容簡介

  精算師是運用精算方法和技術(shù)解決經(jīng)濟問題的專業(yè)人士,既可是商業(yè)保險界的核心精英,又可在金融投資、咨詢等眾多領(lǐng)域擔任要職。目前國內(nèi)精算人才緊缺,且隨著眾多外資銀行進入中國,中國的精算師的教育變得更加緊迫。這套英文版《精算科學系列》將有助于那些對精算科學有興趣的讀者迅速掌握本領(lǐng)域必備的基礎(chǔ)知識。本書將壽險模型建立在不能確定終止日期的一系列現(xiàn)金流上,并結(jié)合金融理論和概率分布理論,重點講述如何對壽險和年金進行定價,是一本壽險理論的概率應用書。本書意在幫助有興趣于精算學和壽險理論的讀者理解壽險理論的定價體系。由于本書中眾多例子及練習取自往年北美精算師(SOA)考試試題,使得本書也是一本針對北美精算師Exam MLC及英國精算師Subject CT5的很好的參考書。

作者簡介

  朱彥云博士于1995年在中央財經(jīng)大學獲得精算學碩士學位,2001年及2003年在美國威斯康星大學麥迪遜分校獲得金融碩士和精算及保險學博士學位。自2003年至今,朱博士作者于美國伊利諾伊大學,講授的課程包括精算數(shù)學、風險模型、風險理論、養(yǎng)老金及概率基礎(chǔ)。朱博士于2004年取得美國精算師資格,并在2005年參與了美國精算師協(xié)會Course 8v Exam(投資學科方向)的出題及評卷工作。朱博士也通過了大部分英車精算師協(xié)會考試,僅需通過兩門考試即能取得英國精算師資格。

圖書目錄

Preface
1 Interest and Annuity-Certain
1.1 Introduction
1.2 Interest
1.2.1 Simple Interest
1.2.2 Compound Interest
1.2.3 Interest Convertible m-thly
1.2.4 Force cf Interest
1.2.5 Relationship among Interest Rates
1.2.6 The Accumulation Factor
1.2.7 The Discount Factor
1.3 Annuities-Certain
1.3.1 Annual Annuities-Certain
1.3.2 Continuous Annuities-Certain
1.3.3 m-thly Annuities-Certain
1.3.4 Accumulated Values of Annuities-Certain at Time n
1.4 Summary
1.5 Exercise
2 Individual Future Lifetime
2.1 Introduction
2.2 A Newborn's Future Lifetime X
2.3 Future Lifetime of (x)
2.3.1 Relationship Between Probability Functions of X and T(x)
2.3.2 Curtate-Future-Lifetime of (x)
2.3.3 Conditional Average Death Time
2.3.4 Central Force of Mortality
2.4 Life Table
2.4.1 Aggregate Life Table
2.4.2 Select-and-Ultimate Life Table
2.5 Summary
2.6 Exercise
3 Life Insurance
3.1 Introduction
3.2 Continuous Life Insurance
3.2.1 Level Life Insurance
3.2.2 A General Continuous Life Insurance
3.3 Discrete Life Insurance
3.3.1 Level Life Insurance
3.3.2 A General Discrete Life Insurance
3.3.3 Commutation Functions
3.4 m-thly Life Insurance
3.5 Endowment Insurance
3.6 Summary
3.7 Exercise
4 Life Annuities
4.1 Introduction
4.2 Continuous Life Annuities
4.2.1 Level Life Annuities
4.2.2 Varying Continuous Life Annuities
4.3 Annual Life Annuities
4.3.1 Level Annual Life Annuities
4.3.2 Varying Annual Life Annuities
4.3.3 Commutation Functions
4.4 Special Life Annuities
4.4.1 m-thly Life Annuities
4.4.2 n-Year-Certain-and-Life Annuities
4.4.3 Apportionable Annuities-Due
4.4.4 Complete Annuities-immediate
4.5 Summary
4.6 Exercise
5 Insurance Premiums
5.1 Introduction
5.2 Insurance Pricing Principles
5.2.1 The Three Pricing Principles
5.2.2 Single Benefit Premiums
5.3 Benefit Premiums
5.3.1 Fully Continuous Benefit Premiums
5.3.2 Fully Discrete Benefit Premiums
5.3.3 m-thly Benefit Premiums
5.3.4 Apportionable Benefit Premiums
5.4 Gross Insurance Premiums
5.4.1 Classification of Expenses
5.4.2 Gross Premiums Under the Equivalence Principle
5.5 Summary
5.6 Exercises
6 Insurance Reserves
6.1 Introduction
6.2 Insurance Reserve Principles
6.2.1 The Prospective Loss Random Variable
6.2.2 The Three Common Principles
6.3 Insurance Benefit Reserves
6.3.1 Benefit Reserves for Fully Continuous Life Insurance
6.3.2 Benefit Reserves for Fully Discrete Life Insurance
6.3.3 Benefit Reserves with the Retrospective Method
6.3.4 Recursive Formula between Discrete Benefit Reserves
6.4 Benefit Reserves for Special Life Insurance
6.4.1 Benefit Reserves for m-thiy Life Insurance
6.4.2 Benefit Reserves for Mixed Life Insurance
6.4.3 Benefit Reserves with Apportionable Premiums
6.4.4 Gross Insurance Reserves
6.5 Summary
6.6 Excercise
7 Joint-Life Functions
7.1 Introduction
7.2 Joint Distributions of Future Lifetimes
7.2.1 The Joint-Life Status
7.2.2 Last-Survivor Status (■)
7.3 Relationship among T(x), T(y), Txy,and T■
7.4 Contingent Probabilities
7.5 Dependent Models
7.5.1 Common Shock Model
7.5.2 Frank's Copula
7.6 Life Insurance on Two Individuals
7.6.1 Life Insurance on (xy) and (■)
7.6.2 Contingent Life Insurance
7.7 Life Annuities on Two Individuals
7.7.1 Life Annuities on (xy) and (■)
7.7.2 Reversionary Annuities
7.8 Summary
7.9 Exercise
8 Multiple-Decrement Model
8.1 Introduction
8.2 A Double-Decrement Model
8.2.1 Future Lifetimes of Two Risks
8.2.2 Probabilities of Decrement
8.3 A General m-Decrement Model
8.3.1 Probabilities of Decrement
8.3.2 Central Rates from a Multiple-Decrement Table
8.3.3 Constructing a Multiple-Decrement Table
8.4 Discretionary Life Insurance
8.4.1 Benefit Premiums for Discretionary Life Insurance
8.4.2 Benefit Reserves for Discretionary Life Insurance
8.4.3 Asset Share
8.5 Summary
8.6 Exercise
Appendix 1 Standard Normal Table
Appendix 2A Illustrative Life Table with i=0.06
Appendix 2B Illustrative Service Table with i=0.06
Appendix 2C Interest Rate Function at i=0.06
Appendix 3 Probability Theorem and Random Variables
Appendix 4 Interest Rate and Annuity-Certain
Bibliography
Symbol Index
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號