注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)力學(xué)計(jì)算流體力學(xué)導(dǎo)論:有限體積法(第2版)

計(jì)算流體力學(xué)導(dǎo)論:有限體積法(第2版)

計(jì)算流體力學(xué)導(dǎo)論:有限體積法(第2版)

定 價(jià):¥69.00

作 者: (美)費(fèi)斯泰赫 著
出版社: 世界圖書出版公司
叢編項(xiàng):
標(biāo) 簽: 力學(xué)

ISBN: 9787510005572 出版時(shí)間: 2010-04-01 包裝: 平裝
開本: 16開 頁數(shù): 503 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  本書是一本非常實(shí)用的計(jì)算流體動(dòng)力學(xué)教材,它以簡(jiǎn)明、清晰的語言介紹了計(jì)算流體動(dòng)力學(xué)的基本原理、控制方程、邊界條件、湍流及其模式、有限體積法等。在保持第一版基本結(jié)構(gòu)和寫作風(fēng)格基礎(chǔ)上,增加了一部分介紹CFD重要發(fā)展;在處理流體流方面,增加了支持LES和DNS的基本觀點(diǎn)的綜述,使得內(nèi)容結(jié)構(gòu)更加完整。重點(diǎn)介紹了目前在各類流行商業(yè)軟件中普遍采用的基于壓力求解體系的有限體積法。本書的最大特點(diǎn)是彌補(bǔ)了理論與商用軟件之間的差距,使讀者通過該書的學(xué)習(xí)能夠掌握應(yīng)用廣泛的PHOENICS,F(xiàn)LOW-3D和STAR-CD等計(jì)算編碼中的基本理論。目次:緒論;流體運(yùn)動(dòng)守恒律與邊界條件;湍流及其模式;擴(kuò)散問題的有限體積方法;對(duì)流-擴(kuò)散問題的有限體積法;壓力-速度耦合在定常問題中的算法;離散方程的求解;非定常流動(dòng)的有限體積方法;邊界條件提法;CFD模型的誤差和不確定度;處理復(fù)幾何的方法;燃燒的CFD模型;放射熱傳導(dǎo)的數(shù)值計(jì)算。

作者簡(jiǎn)介

暫缺《計(jì)算流體力學(xué)導(dǎo)論:有限體積法(第2版)》作者簡(jiǎn)介

圖書目錄

Preface
Acknowledgements
1 Introduction
1.1 What is CFD?
1.2 How does a CFD code work?
1.3 Problem solving with CFD
1.4 Scope of this book
2 Conservation laws of fluid motion and boundary conditions
2.1 Governing equations of fluid flow and heat transfer
2.2 Equations of state
2.3 Navier-Stokes equations for a Newtonian fluid
2.4 Conservative form of the governing equations of fluid flow
2.5 Differential and integral forms of the general transport equations
2.6 Classification of physical behaviours
2.7 The role of characteristics in hyperbolic equations
2.8 Classification method for simple PDEs
2.9 Classification of fluid flow equations
2.10 Auxiliary conditions for viscous fluid flow equations
2.11 Problems in transonic and supersonic compressible flows
2.12 Summary
3 Turbulence and its modelling
3.1 What is turbulence?
3.2 Transition from laminar to turbulent }low
3.3 Descriptors of turbulent flow
3.4 Characteristics of simple turbulent flows
3.5 The effect of turbulent fluctuations on properties of the mean flow
3.6 Turbulent flow calculations
3.7 Reynolds-averaged Navier-Stokes equations and classical turbulence models
3.8 Large eddy simulation
3.9 Direct numerical simulation
3.10 Summary
4 The finite volume method for diffusion problems
4.1 Introduction
4.2 Finite volume method for one-dimensional steady state diffusion
4.3 Worked examples: one-dimensional steady state diffusion
4.4 Finite volume method for two-dimensional diffusion problems
4.5 Finite volume method for three-dimensional diffusion problems
4.6 Summary
5 The finite volume method for convection-diffusion problems
5.1 Introduction
5.2 Steady one-dimensional convection and diffusion
5.3 The central differencing scheme
5.4 Properties of discretisation schemes
5.5 Assessment of the central differencing scheme for convectiondiffusion problems
5.6 The upwind differencing scheme
5.7 The hybrid differencing scheme
5.8 The power-law scheme
5.9 Higher-order differencing schemes for convection-diffusion problems
5.10 TVD schemes
5.11 Summary
6 Solution algorithms for pressure-velocity
6.1 Introduction
6.2 The staggered grid
6.3 The momentum equations
6.4 The SIMPLE algorithm
6.5 Assembly ora complete method
6.6 The SIMPLER algorithm
6.7 The SIMPLEC algorithm
6.8 The PISO algorithm
6.9 General comments on SIMPLE, SIMPLER, SIMPLEC and PISO
6.10 Worked examples of the SIMPLE algorithm
6.11 Summary
7 Solution of discretised equations
7.1 Introduction
7.2 The TDMA
7.3 Application of the TDMA to two-dimensional problems
7.4 Application of the TDMA to three-dimensional problems
7.5 Examples
7.6 Point4terative methods
7.7 Multigrid techniques
7.8 Summary
8 the finite volume method for unsteady flows
8.1 Introduction
8.2 One-dimensional unsteady heat conduction
8.3 Illustrative examples
8.4 Implicit method for two- and three-dimensional problems
8.5 Discretisation of transient convection-diffusion equation
8.6 Worked example of transient convection-diffusion using QUICK differencing
8.7 Solution procedures for unsteady flow calculations
8.8 Steady state calculations using the pseudo-transient approach
8.9 A brief note on other transient schemes
8.10 Summary
9 Implementation of boomfary confftions
9.1 Introduction
9.2 Inlet boundary conditions
9.3 Outlet boundary conditions
9.4 Wall boundary conditions
9.5 The constant pressure boundary condition
9.6 Symmetry boundary condition
9.7 Periodic or cyclic boundary condition
9.8 Potential pitfalls and final remarks
10 Errors and uncertainty in CFD modelling
10.1 Errors and uncertainty in CFD
10.2 Numerical errors
10.3 Input uncertainty
10.4 Physical model uncertainty
10.5 Verification and validation
10,6 Guidelines for best practice in CFD
10.7 Reporting/documentation of CFD simulation inputs and results
10.8 Summary
11 Methods for dealing with complex geometries
11.1 Introduction
11.2 Body-fitted co.ordinate grids for complex geometries
11.3 Catesian vs. curvilinear grids - an example
11.4 Curvilinear grids - difficulties
11.5 Block-structured grids
11.6 Unstructured grids
11.7 Discretisation in unstructured grids
11.8 Discretisafion of the diffusion term
11.9 Discretisafion of the convective term
11.10 Treatment of source terms
11.11 Assembly of discretised equations
11.12 Example calculations with unstructured grids
11.13 Pressure-velocity coupling in unstructured meshes
11.14 Staggered vs. co-located grid arrangements
11.15 Extension of the face velocity interpolation method to unstructured meshes
11.16 Summary
12 CFD modelling of combustion
12.1 Introduction
12.2 Application of the first law of thermodynamics to a combustion system
12.3 Enthalpy of formation
12.4 Some important relationships and properties of gaseous mixtures
12.5 Stoichiometry
12.6 Equivalence ratio
12.7 Adiabatic flame temperature
12.8 Equilibrium and dissociation
12.9 Mechanisms of combustion and chemical kinetics
12.10 Overall reactions and intermediate reactions
12.11 Reaction rate
12.12 Detailed mechanisms
12.13 Reduced mechanisms
12.14 Governing equations for combusting flows
12.15 The simple chemical reacting system (SCRS)
12.16 Modelling of a laminar diffusion flame - an example
12.17 CFD calculation of turbulent non-premixed combustion
12.18 SCRS model for turbulent combustion
12.19 Probability density function approach
12.20 Beta pdf
12.21 The chemical equilibrium model
12.22 Eddy break-up model of combustion
12.23 Eddy dissipation concept
12.24 Laminar flamelet model
12.25 Generation oflaminar, flamelet libraries
12.26 Statistics of the non-equilibrium parameter
12.27 Pollutant formation in combustion
12.28 Modelling of thermal NO formation in combustion
12.29 Flamelet-based NO modelling
12.30 An example to illustrate laminar flamelet modelling and NO modelling of a turbulent flame
12.31 Other models for non-premixed combustion
12.32 Modelling ofpremixed combustion
12.33 Summary
13 Numedcal calculation of radiative heat transfer
13.1 Introduction
13.2 Governing equations of radiative heat transfer
13.3 Solution methods
13.4 Four popular radiation calculation techniques suitable for CFD
13.5 Illustrative examples
13.6 Calculation of radiative properties in gaseous mixtures
13.7 Summary
Appendix A Accuracy of a flow simulation
Appendix B Non-uniform grids
Appendix C Calculation of source terms
Appendix D Limiter functions used in Chapter 5
Appendix E Derivation of one-dimensional governing equations for steady, incompressible flow through a planar nozzle
Appendix F Alternative derivation for the term (n . grad Ai) in Chapter 11
Appendix G Some examples
Bibliography
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)