《脈沖耦合神經(jīng)網(wǎng)絡(luò)及應(yīng)用(國(guó)內(nèi)英文版)》內(nèi)容簡(jiǎn)介:Applications of Pulse-Coupled Neural Networks explores the fields of image processing, including image filtering, image segmentation, image fusion, image coding, image retrieval, and biometric recognition, and the role of pulse-coupled neural networks in these fields.This book is intended for researchers and graduate students in artificial intelligence, pattern recognition, electronic engineering, and computer science.
作者簡(jiǎn)介
Prof. Yide Ma conducts research on intelligent information processing, biomedical image processing, and embedded system development at the School of Information Science and Engineering, Lanzhou University, China.
圖書目錄
Chapter 1 Pulse-Coupled Neural Networks 1.1 Linking Field Model 1.2 PCNN 1.3 Modified PCNN 1.3.1 Intersection Cortical Model 1.3.2 Spiking Cortical Model 1.3.3 Multi-channel PCNN Summary References Chapter 2 Image Filtering 2.1 Traditional Filters 2.1.1 Mean Filte 2.1.2 Median Filte 2.1.3 Morphological Filter 2.1.4 Wiener Filter 2.2 Impulse Noise Filtering 2.2.1 Description of Algorithm Ⅰ 2.2.2 Description of Algorithm Ⅱ 2.2.3 Experimental Results and Analysis 2.3 Gaussian Noise Filtering 2.3.1 PCNNNI and Time Matrix 2.3.2 Description of Algorithm Ⅲ 2.3.3 Experimental Results and Analysis Summary References Chapter 3 Image Segmentation 3.1 Traditional Methods and Evaluation Criteria 3.1.1 Image Segmentation Using Arithmetic Mean 3.1.2 Image Segmentation Using Entropy and Histogram 3.1.3 Image Segmentation Using Maximum Between-cluster Variance 3.1.4 Objective Evaluation Criteria 3.2 Image Segmentation Using PCNN and Entropy 3.3 Image Segmentation Using Simplified PCNN and GA 3.3.1 Simplified PCNN Model 3.3.2 Design of Application Scheme of GA 3.3.3 Flow of Algorithm 3.3.4 Experimental Results and Analysis Summary References Chapter 4 Image Coding 4.1 Irregular Segmented Region Coding 4.1.1 Coding of Contours Using Chain Code 4.1.2 Basic Theories on Orthogonality 4.1.3 Orthonormalizing Process of Basis Functions 4.1.4 ISRC Coding and Decoding Framework 4.2 Irregular Segmented Region Coding Based on PCNN 4.2.1 Segmentation Method 4.2.2 Experimental Results and Analysis Summary References Chapter 5 Image Enhancement 5.1 Image Enhancement 5.1.1 Image Enhancement in Spatial Domain 5.1.2 Image Enhancement in Frequency Domain 5.1.3 Histogram Equalization 5.2 PCNN Time Matrix 5.2.1 Human Visual Characteristics 5.2.2 PCNN and Human Visual Characteristics 5.2.3 PCNN Time Matrix 5.3 Modified PCNN Model 5.4 Image Enhancement Using PCNN Time Matrix 5.5 Color Image Enhancement Using PCNN Summary References Chapter 6 Image Fusion Chapter 7 Feature Extraction Chapter 8 Combinatorial Optimization Chapter 9 FPGA Implementation of PCNN Algorithm Index