注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)化學(xué)化學(xué)計(jì)量學(xué)基礎(chǔ)

化學(xué)計(jì)量學(xué)基礎(chǔ)

化學(xué)計(jì)量學(xué)基礎(chǔ)

定 價(jià):¥38.00

作 者: 梁逸曾,易倫朝 編著
出版社: 華東理工大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 化學(xué)原理和方法

ISBN: 9787562828716 出版時(shí)間: 2010-10-01 包裝: 平裝
開本: 16開 頁數(shù): 196 字?jǐn)?shù):  

內(nèi)容簡介

  《化學(xué)計(jì)量學(xué)基礎(chǔ)》以化學(xué)計(jì)量學(xué)的基礎(chǔ)知識為其主線,在講述數(shù)學(xué)基礎(chǔ)時(shí)就試圖與其化學(xué)應(yīng)用直接相連,始終注意到講解這些知識可為化學(xué)家們提供了什么樣的新思路,可以解決什么樣的化學(xué)問題?!痘瘜W(xué)計(jì)量學(xué)基礎(chǔ)》雖用英文編寫,但文中出現(xiàn)的一些非常用英文單詞皆給出中文提示,以節(jié)省學(xué)生查閱字典的時(shí)間;凡是在書中出現(xiàn)重要知識點(diǎn)的地方,本書盡量佐以問題進(jìn)行提示,以引起學(xué)生的足夠注意;另外,本書在必要時(shí)還盡量給出中文注釋和評述,對所授知識進(jìn)一步進(jìn)行解釋和闡述,以提高學(xué)生的認(rèn)識和降低閱讀的難度。

作者簡介

暫缺《化學(xué)計(jì)量學(xué)基礎(chǔ)》作者簡介

圖書目錄

Chapter 1 Introduction and Necessary Fundamental Knowledge of Mathematics
1.1 Chemometrics: Definition and Its Brief History / 3
1.2 The Relationship between Analytical Chemistry and Chemometrics / 4
1.3 The Relationship between Chemometrics, Chemoinformatics and Bioinformatics / 7
1.4 Necessary Knowledge of Mathematics / 9
1.4.1 Vector and Its Calculation / 10
1.4.2 Matrix and Its Calculation / 19
Chapter 2 Chemical Experiment Design
2.1 Introduction / 39
2.2 Factorial Design and Its Rational Analysis / 41
2.2.1 Computation of Effects Using Sign Tables / 44
2.2.2 Normal Plot of Effects and Residuals / 45
2.3 Fractional Factorial Design / 47
2.4 Orthogonal Design and Orthogonal Array / 52
2.4.1 Definition of Orthogonal Design Table / 53
2.4.2 Orthogonal Arrays and Their Inter-effect Tables / 54
2.4.3 Linear Graphs of Orthogonal Array and Its Applications / 55
2.5 Uniform Experimental Design and Uniform Design Table / 55
2.5.1 Uniform Design Table and Its Construction / 56
2.5.2 Uniformity Criterion and Accessory Tables for Uniform Design / 59
2.5.3 Uniform Design for Pseudo-level / 60
2.5.4 An Example for Optimization of Electropherotic Separation Using Uniform Design / 61
2.6 D-Optimal Experiment Design / 65
2.7 Optimization Based on Simplex and Experiment Design / 68
2.7.1 Constructing an Initial Simplex to Start the Experiment Design / 69
2.7.2 Simplex Searching and Optimization / 70
Chapter 3 Processing of Analytic Signals
3.1 Smoothing Methods of Analytical Signals / 77
3.1.1 Moving-Window Average Smoothing Method / 77
3.1.2 Savitsky-Golay Filter / 77
3.2 Derivative Methods of Analytical Signals / 83
3.2.1 Simple Difference Method / 83
3.2.2 Moving-Window Polynomial Least-Squares Fitting Method / 84
3.3 Background Correction Method of Analytical Signals / 89
3.3.1 Penalized Least Squares Algorithm / 89
3.3.2 Adaptive Iteratively Reweighted Procedure / 90
3.3.3 Some Examples for Correcting the Baseline from Different Instruments / 92
3.4 Transformation Methods of Analytical Signals / 94
3.4.1 Physical Meaning of the Convolution Algorithm / 94
3.4.2 Multichannel Advantage in Spectroscopy and Hadamard Transformation / 96
3.4.3 Fourier Transformation / 99
Appendix 1.A Matlab Program for Smoothing the Analytical Signals / 108
Appendix 2 :A Matlab Program for Demonstration of FT Applied to Smoothing / 112
Chapter 4 Multivariate Calibration and Multivariate Resolution
4.1 Multivariate Calibration Methods for White Analytical Systems / 116
4.1.1 Direct Calibration Methods / 116
4.1.2 Indirect Calibration Methods / 121
4.2 Multivariate Calibration Methods for Grey Analytical Systems / 126
4.2.1 Vectoral Calibration Methods / 127
4.2.2 Matrix Calibration Methods / 127
4.3 Multivariate Resolution Methods for Black Analytical Systems / 129
4.3.1 Self-modeling Curve Resolution Method / 131
4.3.2 Iterative Target Transformation Factor Analysis / 134
4.3.3 Evolving Factor Analysis and Related Methods / 137
4.3.4 Window Factor Analysis / 141
4.3.5 Heuristic Evolving Latent Projections / 145
4.3.6 Subwindow Factor Analysis / 152
4.4 Multivariate Calibration Methods for Generalized Grey Analytical Systems / 154
4.4.1 Principal Component Regression (PCR) / 156
4.4.2 Partial Least Squares (PLS) / 157
4.4.3 Leave-one-out Cross-validation / 159
Chapter 5 Pattern Recognition and Pattern Analysis for Chemical Analytical Data
5.1 Introduction / 169
5.1.1 Chemical Pattern Space / 169
5.1.2 Distance in Pattern Space and Measures of Similarity / 171
5.1.3 Feature Extraction Methods / 173
5.1.4 Pretreatment Methods for Pattern Recognition / 173
5.2 Supervised Pattern Recognition Methods: Discriminant Analysis Methods / 174
5.2.1 Discrimination Method Based on Euclidean Distance / 175
5.2.2 Discrimination Method Based on Mahaianobis Distance / 175
5.2.3 Linear Learning Machine / 176
5.2.4 k-Nearest Neighbors Discrimination Method / 177
5.3 Unsupervised Pattern Recognition Methods: Clustering Analysis Methods / 179
5.3.1 Minimum Spanning Tree Method / 179
5.3.2 k-means Clustering Method / 181
5.4 Visual Dimensional Reduction Based on Latent Projections / 183
5.4.1 Projection Discrimination Method Based on Principal Component Analysis / 183
5.4.2 SMICA Method Based on Principal Component Analysis / 186
5.4.3 Classification Method Based on Partial Least Squares / 193

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號