注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術(shù)計算機/網(wǎng)絡人工智能人工智能:一種現(xiàn)代的方法(第3版)

人工智能:一種現(xiàn)代的方法(第3版)

人工智能:一種現(xiàn)代的方法(第3版)

定 價:¥158.00

作 者: (美)拉塞爾,(美)諾維格 著
出版社: 清華大學出版社
叢編項:
標 簽: 人工智能

ISBN: 9787302252955 出版時間: 2011-07-01 包裝: 平裝
開本: 16開 頁數(shù): 1132 字數(shù):  

內(nèi)容簡介

  《大學計算機教育國外著名教材系列·人工智能:一種現(xiàn)代的方法(第3版)(影印版)》最權(quán)威、最經(jīng)典的人工智能教材,已被全世界100多個國家的1200多所大學用作教材?!洞髮W計算機教育國外著名教材系列·人工智能:一種現(xiàn)代的方法(第3版)(影印版)》的最新版全面而系統(tǒng)地介紹了人工智能的理論和實踐,闡述了人工智能領(lǐng)域的核心內(nèi)容,并深入介紹了各個主要的研究方向。全書仍分為八大部分:第一部分“人工智能”,第二部分“問題求解”,第三部分“知識與推理”,第四部分“規(guī)劃”,第五部分“不確定知識與推理”,第六部分“學習”,第七部分“通信、感知與行動”,第八部分“結(jié)論”?!洞髮W計算機教育國外著名教材系列·人工智能:一種現(xiàn)代的方法(第3版)(影印版)》既詳細介紹了人工智能的基本概念、思想和算法,還描述了其各個研究方向最前沿的進展,同時收集整理了詳實的歷史文獻與事件。另外,《大學計算機教育國外著名教材系列·人工智能:一種現(xiàn)代的方法(第3版)(影印版)》的配套網(wǎng)址為教師和學生提供了大量教學和學習資料?!洞髮W計算機教育國外著名教材系列·人工智能:一種現(xiàn)代的方法(第3版)(影印版)》適合于不同層次和領(lǐng)域的研究人員及學生,是高等院校本科生和研究生人工智能課的首選教材,也是相關(guān)領(lǐng)域的科研與工程技術(shù)人員的重要參考書。

作者簡介

  Stuart?Russell,1962年生于英格蘭的Portsmouth。他于1982年以一等成績在牛津大學獲得物理學學士學位,并于1986年在斯坦福大學獲得計算機科學的博士學位。之后他進入加Stuart Russell,1962年生于英格蘭的Portsmouth。他于1982年以一等成績在牛津大學獲得物理學學士學位,并于1986年在斯坦福大學獲得計算機科學的博士學位。之后他進入加州大學伯克利分校,任計算機科學教授,智能系統(tǒng)中心主任,擁有Smith-Zadeh工程學講座教授頭銜。1990年他獲得國家科學基金的“總統(tǒng)青年研究者獎”(Presidential Young Investigator Award),1995年他是“計算機與思維獎”(Computer and Thought Award)的獲得者之一。1996年他是加州大學的Miller教授(Miller Professor),并于2000年被任命為首席講座教授(Chancellor's Professorship)。1998年他在斯坦福大學做過Forsythe紀念演講(Forsythe Memorial Lecture)。他是美國人工智能學會的會士和前執(zhí)行委員會委員。他已經(jīng)發(fā)表100多篇論文,主題廣泛涉及人工智能領(lǐng)域。他的其他著作包括《在類比與歸納中使用知識》(The Use of Knowledge in Analogy abd Induction).以及(與Eric Wefald合著的)《做正確的事情:有限理性的研究》(Do the Right Thing: Studies in Limited Rationality)。Peter Norvig,現(xiàn)為Google研究院主管(Director of Research),2002-2005年為負責核心Web搜索算法的主管。他是美國人工智能學會的會士和ACM的會士。他曾經(jīng)是NASAAmes研究中心計算科學部的主任,負責NASA在人工智能和機器人學領(lǐng)域的研究與開發(fā),他作為Junglee的首席科學家?guī)椭_發(fā)了一種最早的互聯(lián)網(wǎng)信息抽取服務。他在布朗( Brown)大學得應用數(shù)學學士學位,在加州大學伯克利分校獲得計算機科學的博士學位。他獲得了伯克利“卓越校友和工程創(chuàng)新獎”,從NASA獲得了“非凡成就勛章”。他曾任南加州大學的教授,并是伯克利的研究員。他的其他著作包括《人工智能程序設計范型:通用Lisp語言的案例研究》(Paradigms of AI Programming: Case Studies in Common Lisp)和《Verbmobil:一個面對面對話的翻譯系統(tǒng)》(Verbmobil:A Translation System for Face-to-FaceDialog),以及《UNIX的智能幫助系統(tǒng)》(lntelligent Help Systemsfor UNIX)。顯示全部信息

圖書目錄

Ⅰ artificial intelligence
1 introduction
1.1what is al?
1.2the foundations of artificial intelligence
1.3the history of artificial intelligence
1.4the state of the art
1.5summary, bibliographical and historical notes, exercises
2 intelligent agents
2.1agents and environments
2.2good behavior: the concept of rationality
2.3the nature of environments
2.4the structure of agents
2.5summary, bibliographical and historical notes, exercises
Ⅱ problem-solving
3 solving problems by searching
3.1problem-solving agents
3.2example problems
3.3searching for solutions
3.4uninformed search strategies
3.5informed (heuristic) search strategies
3.6heuristic functions
3.7summary, bibliographical and historical notes, exercises
4 beyond classical search
4.1local search algorithms and optimization problems
4.2local search in continuous spaces
4.3searching with nondeterministic actions
4.4searching with partial observations
4.5online search agents and unknown environments
4.6summary, bibliographical and historical notes, exercises
5 adversarial search
5.1games
5.2optimal decisions in games
5.3alpha-beta pruning
5.4imperfect real-time decisions
5.5stochastic games
5.6partially observable games
5.7state-of-the-art game programs
5.8alternative approaches
5.9summary, bibliographical and historical notes, exercises
6 constraint satisfaction problems
6.1defining constraint satisfaction problems
6.2constraint propagation: inference in csps
6.3backtracking search for csps
6.4local search for csps
6.5the structure of problems
6.6summary, bibliographical and historical notes, exercises
Ⅲ knowledge, reasoning, and planning
7 logical agents
7.1knowledge-based agents
7.2the wumpus world
7.3logic
7.4propositional logic: a very simple logic
7.5propositional theorem proving
7.6effective propositional model checking
7.7agents based on propositional logic
7.8summary, bibliographical and historical notes, exercises
8 first-order logic
8.1representation revisited
8.2syntax and semantics of first-order logic
8.3using first-order logic
8.4knowledge engineering in first-order logic
8.5summary, bibliographical and historical notes, exercises
9 inference in first-order logic
9.1propositional vs. first-order inference
9.2unification and lifting
9.3forward chaining
9.4backward chaining
9.5resolution
9.6summary, bibliographical and historical notes, exercises
10 classical planning
10.1 definition of classical planning
10.2 algorithms for planning as state-space search
10.3 planning graphs
10.4 other classical planning approaches
10.5 analysis of planning approaches
10.6 summary, bibliographical and historical notes, exercises
11 planning and acting in the real world
11.1 time, schedules, and resources
11.2 hierarchical planning
11.3 planning and acting in nondeterministic domains
11.4 multiagent planning
11.5 summary, bibliographical and historical notes, exercises
12 knowledge representation
12.1 ontological engineering
12.2 categories and objects
12.3 events
12.4 mental events and mental objects
12.5 reasoning systems for categories
12.6 reasoning with default information
12.7 the intemet shopping world
12.8 summary, bibliographical and historical notes, exercises
Ⅳ uncertain knowledge and reasoning
13 quantifying uncertainty
13.1 acting under uncertainty
13.2 basic probability notation
13.3 inference using full joint distributions
13.4 independence
13.5 bayes' rule and its use
13.6 the wumpus world revisited
13.7 summary, bibliographical and historical notes, exercises
14 probabilistic reasoning
14.1 representing knowledge in an uncertain domain
14.2 the semantics of bayesian networks
14.3 efficient representation of conditional distributions
14.4 exact inference in bayesian networks
14.5 approximate inference in bayesian networks
14.6 relational and first-order probability models
14.7 other approaches to uncertain reasoning
14.8 summary, bibliographical and historical notes, exercises
15 probabilistic reasoning over time
15.1 time and uncertainty
15.2 inference in temporal models
15.3 hidden markov models
15.4 kalman filters
15.5 dynamic bayesian networks
15.6 keeping track of many objects
15.7 summary, bibliographical and historical notes, exercises
16 making simple decisions
16.1 combining beliefs and desires under uncertainty
16.2 the basis of utility theory
16.3 utility functions
16.4 multiattribute utility functions
16.5 decision networks
16.6 the value of information
16.7 decision-theoretic expert systems
16.8 summary, bibliographical and historical notes, exercises
17 making complex decisions
17.1 sequential decision problems
17.2 value iteration
17.3 policy iteration
17.4 partially observable mdps
17.5 decisions with multiple agents: game theory
17.6 mechanism design
17.7 summary, bibliographical and historical notes, exercises
V learning
18 learning from examples
18.1 forms of learning
18.2 supervised learning
18.3 leaming decision trees
18.4 evaluating and choosing the best hypothesis
18.5 the theory of learning
18.6 regression and classification with linear models
18.7 artificial neural networks
18.8 nonparametric models
18.9 support vector machines
18.10 ensemble learning
18.11 practical machine learning
18.12 summary, bibliographical and historical notes, exercises
19 knowledge in learning
19.1 a logical formulation of learning
19.2 knowledge in learning
19.3 explanation-based learning
19.4 learning using relevance information
19.5 inductive logic programming
19.6 summary, bibliographical and historical notes, exercis
20 learning probabilistic models
20.1 statistical learning
20.2 learning with complete data
20.3 learning with hidden variables: the em algorithm.
20.4 summary, bibliographical and historical notes, exercis
21 reinforcement learning
21. l introduction
21.2 passive reinforcement learning
21.3 active reinforcement learning
21.4 generalization in reinforcement learning
21.5 policy search
21.6 applications of reinforcement learning
21.7 summary, bibliographical and historical notes, exercis
VI communicating, perceiving, and acting
22 natural language processing
22.1 language models
22.2 text classification
22.3 information retrieval
22.4 information extraction
22.5 summary, bibliographical and historical notes, exercis
23 natural language for communication
23.1 phrase structure grammars
23.2 syntactic analysis (parsing)
23.3 augmented grammars and semantic interpretation
23.4 machine translation
23.5 speech recognition
23.6 summary, bibliographical and historical notes, exercis
24 perception
24.1 image formation
24.2 early image-processing operations
24.3 object recognition by appearance
24.4 reconstructing the 3d world
24.5 object recognition from structural information
24.6 using vision
24.7 summary, bibliographical and historical notes, exercises
25 robotics
25.1 introduction
25.2 robot hardware
25.3 robotic perception
25.4 planning to move
25.5 planning uncertain movements
25.6 moving
25.7 robotic software architectures
25.8 application domains
25.9 summary, bibliographical and historical notes, exercises
VII conclusions
26 philosophical foundations
26.1 weak ai: can machines act intelligently?
26.2 strong ai: can machines really think?
26.3 the ethics and risks of developing artificial intelligence
26.4 summary, bibliographical and historical notes, exercises
27 al: the present and future
27.1 agent components
27.2 agent architectures
27.3 are we going in the right direction?
27.4 what if ai does succeed?
a mathematical background
a. 1complexity analysis and o0 notation
a.2 vectors, matrices, and linear algebra
a.3 probability distributions
b notes on languages and algorithms
b.1defining languages with backus-naur form (bnf)
b.2describing algorithms with pseudocode
b.3online help
bibliography
index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號