注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術計算機/網(wǎng)絡人工智能人工智能:智能系統(tǒng)指南(英文版·第3版)

人工智能:智能系統(tǒng)指南(英文版·第3版)

人工智能:智能系統(tǒng)指南(英文版·第3版)

定 價:¥49.00

作 者: (澳)尼格尼維斯基 著
出版社: 機械工業(yè)出版社
叢編項:
標 簽: 人工智能

ISBN: 9787111358220 出版時間: 2011-09-01 包裝: 平裝
開本: 32開 頁數(shù): 479 字數(shù):  

內(nèi)容簡介

  人工智能經(jīng)常被人們認為是計算機科學中一門高度復雜甚至令人生畏的學科。長期以來人工智能方面的書籍往往包含復雜矩陣代數(shù)和微分方程。本書基于作者多年來給沒有多少微積分知識的學生授課時所用的講義,假定讀者沒有編程經(jīng)驗,以簡單易懂的方式介紹了智能系統(tǒng)的基礎知識?!度斯ぶ悄苤悄芟到y(tǒng)指南(英文版.第3版)》目前已經(jīng)被國際上多所大學(例如,德國的馬格德堡大學、日本的廣島大學、美國的波士頓大學和羅切斯特理工學院等)采納為教材。如果您正在尋找關于人工智能或智能系統(tǒng)設計課程的淺顯易懂的入門級教材,如果您不是計算機科學領域的專業(yè)人員而又正在尋找介紹基于知識系統(tǒng)最新技術發(fā)展的自學指南,本書將是您的最佳選擇。與上一版相比,本版進行了全面更新,以反映人工智能領域的最新進展。其中新增了數(shù)據(jù)挖掘與知識發(fā)現(xiàn)一章和自組織神經(jīng)網(wǎng)絡聚類一節(jié)內(nèi)容,同時補充了4個新的案例研究。

作者簡介

  Michael Negnevitsky,澳大利亞塔斯馬尼亞大學電氣工程和計算機科學系教授。他的許多研究課題都涉及人工智能和軟計算。他一直致力于電氣工程、過程控制和環(huán)境工程中智能系統(tǒng)的開發(fā)和應用,著有200多篇論文、兩本專著,并獲得了四項發(fā)明專利。

圖書目錄

preface
preface to the third edition
overview of the book
acknowledgements
1 introduction to knowledge-based intelligent systems
1.1 intelligent machines, or what machines can do
1.2 the history of artificial intelligence, or from the 'dark ages' to knowledge*based systems
1.3 summary
questions for review
references
2 rule-based expert systems
2.1 introduction, or what is knowledge?
2.2 rules as a knowledge representation technique
2.3 the main players in the expert system development team
2.4 structure of a rule*based expert system
2.5 fundamental characteristics of an expert system
2.6 forward chaining and backward chaining inference techniques
2.7 media advisor: a demonstration rule*based expert system
2.8 conflict resolution
2.9 advantages and disadvantages of rule*based expert systems
2.10 summary
questions for review
references
3 uncertainty management in rule-based expert systems
3.1 introduction, or what is uncertainty?
3.2 basic .probability theory
3.3 bayesian reasoning
3.4 forecast: bayesian accumulation of evidence
3.5 bias of the bayesian method
3.6 certainty factors theory and evidential reasoning
3.7 forecast: an application of certainty factors
3.8 comparison of bayesian reasoning and certainty factors
3.9 summary
questions for review
references
4 fuzzy expert systems
4.1 introduction, or what is fuzzy thinking?
4.2 fuzzy sets
4.3 linguistic variables and hedges
4.4 operations of fuzzy sets
4.5 fuzzy rules
4.6 fuzzy inference
4.7 building a fuzzy expert system
4.8 summary
questions for review
references
bibliography
5 frame-based expert systems
5.1 introduction, or what is a frame?
5.2 frames as a knowledge representation technique
5.3 inheritance in frame-based systems
5.4 methods and demons
5.5 interaction of frames and rules
5.6 buy smart: a frame-based expert system
5.7 summary
questions for review
references
bibliography
6 artificial neural networks
6.1 introduction, or how the brain works
6.2 the neuron as a simple computing element
6.3 the perceptron
6.4 multilayer neural networks
6.5 accelerated learning in multilayer neural networks
6.6 the hopfield network
6.7 bidirectional associative memory
6.8 self-organising neural networks
6.9 summary
questions for review
references
evolutionary computation
7.1 introduction, or can evolution be intelligent?
7.2 simulation of natural evolution
7.3 genetic algorithms
7.4 why genetic algorithms work
7.5 case study: maintenance scheduling with genetic algorithms
7.6 evolution strategies
7.7 genetic programming
7.8 summary
questions for review
references
bibliography
8 hybrid intelligent systems
8.1 introduction, or how to combine german mechanics with italian love
8.2 neural expert systems
8.3 neuro-fuzzy systems
8.4 anfis: adaptive neuro-fuzzy inference system
8.5 evolutionary neural networks
8.6 fuzzy evolutionary systems
8.7 summary
questions for review
references
9 knowledge engineering
9.1 introduction, or what is knowledge engineering?
9.2 will an expert system work for my problem?
9.3 will a fuzzy expert system work for my problem?
9.4 will a neural network work for my problem?
9.5 will genetic algorithms work for my problem?
9.6 will a hybrid intelligent system work for my problem?
9.7 summary
questions for review
references
10 data mining and knowledge discovery
10.1 introduction, or what is data mining?
10.2 statistical methods and data visualisation
10.3 principal component analysis
10.4 relational databases and database queries
10.s the data warehouse and multidimensional data analysis
10.6 decision trees
10.7 association rules and market basket analysis
10.8 summary
questions for review
references
glossary
appendix: al tools and vendors
index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號