注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術自然科學力學統(tǒng)一坐標系下的計算流體力學方法

統(tǒng)一坐標系下的計算流體力學方法

統(tǒng)一坐標系下的計算流體力學方法

定 價:¥68.00

作 者: 許為厚(Wai How Hui) 著
出版社: 科學出版社
叢編項:
標 簽: 力學

ISBN: 9787030323194 出版時間: 2012-01-01 包裝: 精裝
開本: 16開 頁數(shù): 189 字數(shù):  

內(nèi)容簡介

  本書是運用大規(guī)模數(shù)值計算來解決流體的運動問題。眾所周知,在流體計算中,一個給定流場的數(shù)值解是該流場的流動狀態(tài)在為其設定的坐標中的體現(xiàn)。計算流體力學通常使用的兩個坐標系,即歐拉坐標系和拉格朗日坐標系,既有優(yōu)點又有不足。歐拉方法相對簡單,但是其不足在于:(a)對接觸間斷的分辨率不足;(b)在流體計算之前先要生成貼體坐標。相反地,拉格朗日方法很好地分辨出接觸間斷(包括物質(zhì)介面和自由面),但它的缺點在于:(a)氣體動力方程不能寫成守恒型偏微分方程的形式,使得數(shù)值計算復雜和缺乏唯一性;(b)由于網(wǎng)格扭曲導致計算中斷。因此,計算流體力學的基本問題除了深刻理解物理流動之外,同時也要尋找\最優(yōu)的\坐標系。統(tǒng)一坐標系方法是《統(tǒng)一坐標系下的計算流體力學方法》第一作者許為厚教授在前人坐標變換的基礎上的進一步發(fā)展,并在與其同事多年的合作中建立起來的。在計算流體力學的研究中尋找\最優(yōu)的\坐標系肯定還會繼續(xù)下去,目前為止,統(tǒng)一坐標系可較好地結(jié)合前兩種坐標系的優(yōu)點,避免它們的不足。例如,統(tǒng)一坐標系可以通過計算自動生成網(wǎng)格,而且網(wǎng)格速度也可以考慮加入避免網(wǎng)格大變形的\擴散\速度?!督y(tǒng)一坐標系下的計算流體力學方法》首先回顧了一維和多維計算流體力學中的歐拉、拉格朗日以及ALE(Arbitrary-Lagrangian-Eulerian)方法的優(yōu)缺點以及各種移動網(wǎng)格方法,然后系統(tǒng)介紹了統(tǒng)一坐標法,用一些具體的算例闡明它和現(xiàn)有方法之間的關系。

作者簡介

暫缺《統(tǒng)一坐標系下的計算流體力學方法》作者簡介

圖書目錄

Chapter 1 Introduction
1.1 CFD as Numerical Solution to Nonlinear Hyperbolic PDEs
1.2 Role of Coordinates in CFD
1.3 Outline of the Book
References
Chapter 2 Derivation of Conservation Law Equations
2.1 Fluid as a Continuum
2.2 Derivation of Conservation Law Equations in FixedCoordinates
2.3 Conservation Law Equations in Moving Coordinates
2.4 Integral Equations versus Partial Differential Equations
2.5 The Entropy Condition for Inviscid Flow Computation
References
Chapter 3 Review of Eulerian Computation for 1-D InviscidFlow
3.1 Flow Discontinuities and Rankine-Hugoniot Conditions
3.2 Classification of Flow Discontinuities
3.3 Riemann Problem and its Solution
3.4 Preliminary Considerations of Numerical Computation
3.5 Godunov Scheme
3.6 High Resolution Schemes and Limiters
3.7 Defects of Eulerian Computation
References
Chapter 4 I-D Flow Computation Using the Unified Coordinates
4.1 Gas Dynamics Equations Based on the Unified Coordinates
4.2 Shock-Adaptive Godunov Scheme
4.3 The Use of Entropy Conservation Law for Smooth FlowComputation
4.4 The Unified Computer Code
4.5 Cure of Defects of Eulerian and Lagrangian Computation by theUC Method
4.6 Conclusions
References
Chapter 5 Comments on Current Methods for Multi-Dimensional FlowComputation
5.1 Eulerian Computation
5.2 Lagrangian Computation
5.3 The ALE Computation
5.4 Moving Mesh Methods
5.5 Optimal Coordinates
References
Chapter 6 The Unified Coordinates Formulation of CFD
6.1 Hui Transformation
6.2 Geometric Conservation Laws
6.3 Derivation of Governing Equations in Conservation Form
References
Chapter 7 Properties of the Unified Coordinates
7.1 Relation to Eulerian Computation
7.2 Relation to Classical Lagrangian Coordinates
7.3 Relation to Arbitrary-Lagrangian-Eulerian Computation
7.4 Contact Resolution
7.5 Mesh Orthogonality
7.6 Unified Coordinates for Steady Flow
7.7 Effects of Mesh Movement on the Flow
7.8 Relation to Other Moving Mesh Methods
7.9 Relation to Mesh Generation and the Level-Set FunctionMethod
References
Chapter 8 Lagrangian Gas Dynamics
8.1 Lagrangian Gas Dynamics Equations
8.2 Weak Hyperbolicity
8.3 Non-Equivalency of Lagrangian and Eularian Formulation
References
Chapter 9 Steady 2-D and 3-D Supersonic Flow
9.1 The Unified Coordinates for Steady Flow
9.2 Euler Equations in the Unified Coordinates
9.3 The Space-Marching Computation
9.4 Examples
……
Chapter 10 Unsteady 2-D and 3-D Flow Computation
Chapter 11 Viscous Flow Computation Using Navier-StokesEquations
Chapter 12 Applications of the Unified Coordinates to KineticTheory
Chapter 13 Summary
Appendix A Riemann Problem for 1-D Flow in the UnifiedCoordinate
Appendix B Computer Code for 1-D Flow in the Unified Coordinate

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號