《準(zhǔn)混沌沖擊振子:重正化符號(hào)動(dòng)力學(xué)及運(yùn)動(dòng)遷移現(xiàn)象(英文版)》介紹了準(zhǔn)混沌運(yùn)動(dòng)研究的最新進(jìn)展,討論了動(dòng)力系統(tǒng)中有序運(yùn)動(dòng)與無序運(yùn)動(dòng)交界處的復(fù)雜的動(dòng)力學(xué)分支行為。準(zhǔn)混沌運(yùn)動(dòng)是由具有自相似結(jié)構(gòu)的穩(wěn)定運(yùn)動(dòng)島鄰域附近運(yùn)動(dòng)軌跡的吸引性來刻畫的,并且其相空間的位移是隨時(shí)間的冪指數(shù)而漸近增加的。本專著全面、系統(tǒng)、自成體系地研究了一維經(jīng)典沖擊振子模型,并以完美的形式展示了準(zhǔn)混沌運(yùn)動(dòng)在物理學(xué)和數(shù)學(xué)上的規(guī)則性和復(fù)雜性?!稖?zhǔn)混沌沖擊振子:重正化符號(hào)動(dòng)力學(xué)及運(yùn)動(dòng)遷移現(xiàn)象(英文版)》包含了目前文獻(xiàn)中很多不曾涉及的新內(nèi)容和新結(jié)果,它將激發(fā)物理學(xué)、應(yīng)用數(shù)學(xué)的研究生和學(xué)者以及非線性動(dòng)力學(xué)的專家對(duì)準(zhǔn)混沌運(yùn)動(dòng)研究的極大興趣,是一本難得的教科書或參考書。John H. Lowenstein為紐約大學(xué)物理系教授,非線性動(dòng)力系統(tǒng)領(lǐng)域知名科學(xué)家,長(zhǎng)期專注于一維沖擊振子的動(dòng)力學(xué)行為研究并取得了豐碩的成果,其中包括:在低維混沌和準(zhǔn)混沌哈密頓系統(tǒng)中的運(yùn)動(dòng)遷移現(xiàn)象,區(qū)間及多邊形分段等距自相似結(jié)構(gòu)的數(shù)學(xué)理論。
1 Introduction 1.1 Kicked oscillators 1.2 Poincare sections 1.3 Crystalline symmetry 1.4 Stochastic webs 1.5 Normal and anomalous diffusive behavior 1.6 The sawtooth web map 1.7 Renormalizability 1.8 Long-time asymptotics 1.9 Linking local and global behavior 1.10 Organization of the book References 2 Renormalizability of the Local Map 2.1 Heuristic approach to renormalizability 2.1.1 Generalized rotations 2.1.2 Natural return map tree 2.1.3 Examples 2.2 Quadratic piecewise isometries 2.2.1 Arithmetic preliminaries 2.2.2 Domains 2.2.3 Geometric transformations on domains 2.2.4 Scaling sequences 2.2.5 Periodic orbits 2.2.6 Recursive tiling 2.2.7 Computer-assisted proofs 2.3 Three quadratic models 2.3.1 Modell 2.3.2 Modelll 2.3.3 Model III 2.4 Proofofrenormalizability 2.5 Structure of the discontinuity set 2.5.1 Modell 2.5.2 Modellll 2.6 More general renormalization 2.7 The π/7 model References 3 Symbolic Dynanucs 3.1 Symbolic representation of the residual set 3.1.1 Hierarchical symbol strings 3.1.2 Eventually periodic codes 3.1.3 Simplified codes for quadratic models 3.2 Dynamical updating of codes 3.3 Admissibility 3.3.1 Quadratic example 3.3.2 Models I, II, and III 3.3.3 Cubic example 3.4 Minimality References 4 Dimensions and Measures 4.1 Hausdorff dimension and Hausdorff measure 4.2 Construction of the measure 4.3 Simplification for quadratic irrational 4.4 A complicated example: Model II 4.5 Discontinuity set in Model III 4.6 Multifractal residual set of the π/7 model 4.7 Asymptotic factorization 4.8 Telescoping 4.9 Unique ergodicity for each ∑(i) 4.10 Multifractal spectrum of recurrence time dimensions 4.10.1 Auxiliary measures and dimensions 4.10.2 Simpler calculation of the recurrence time dimensions 4.10.3 Recurrence time spectrum for the π/7 model References 5 Global Dynanucs 5.1 Global expansivity 5.1.1 Lifting the return map PK (O) 5.1.2 Lifting the higher-level return maps 5.2 Long-time asymptotics 5.3 Quadratic examples 5.4 Cubic examples 5.4.1 Orbits in the (O,k,6∞) sectors …… 6 Transport 7 Hamiltonian Round-Off Appendix A Data Tables Appendix B The Codometer Index Color Figure Index