注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)計(jì)算機(jī)/網(wǎng)絡(luò)人工智能機(jī)械系統(tǒng)RBF神經(jīng)網(wǎng)絡(luò)控制:設(shè)計(jì)、分析及Matlab仿真(英文)

機(jī)械系統(tǒng)RBF神經(jīng)網(wǎng)絡(luò)控制:設(shè)計(jì)、分析及Matlab仿真(英文)

機(jī)械系統(tǒng)RBF神經(jīng)網(wǎng)絡(luò)控制:設(shè)計(jì)、分析及Matlab仿真(英文)

定 價(jià):¥99.00

作 者: 劉金琨 著
出版社: 清華大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 計(jì)算機(jī)/網(wǎng)絡(luò) 人工智能

購(gòu)買(mǎi)這本書(shū)可以去


ISBN: 9787302302551 出版時(shí)間: 2013-03-01 包裝: 精裝
開(kāi)本: 16開(kāi) 頁(yè)數(shù): 365 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  《機(jī)械系統(tǒng)RBF神經(jīng)網(wǎng)絡(luò)控制:設(shè)計(jì)、分析及Matlab仿真(英文)》從Matlab仿真角度,結(jié)合典型機(jī)械系統(tǒng)控制的實(shí)例,系統(tǒng)地介紹了神經(jīng)網(wǎng)絡(luò)控制的基本理論、基本方法和應(yīng)用技術(shù),是作者多年來(lái)從事控制系統(tǒng)教學(xué)和科研工作的結(jié)晶,同時(shí)融入了國(guó)內(nèi)外同行近年來(lái)所取得的新成果。全書(shū)共分11章,包括RBF網(wǎng)絡(luò)的設(shè)計(jì)及分析、基于梯度下降法的RBF網(wǎng)絡(luò)控制、簡(jiǎn)單的RBF網(wǎng)絡(luò)自適應(yīng)控制、RBF網(wǎng)絡(luò)滑??刂?、基于RBF網(wǎng)絡(luò)逼近的自適應(yīng)控制、基于RBF網(wǎng)絡(luò)的自適應(yīng)反演控制、RBF網(wǎng)絡(luò)數(shù)字控制、離散系統(tǒng)的RBF網(wǎng)絡(luò)控制及自適應(yīng)RBF網(wǎng)絡(luò)觀測(cè)器的設(shè)計(jì)。每種控制方法都通過(guò)Matlab進(jìn)行了仿真分析。《機(jī)械系統(tǒng)RBF神經(jīng)網(wǎng)絡(luò)控制:設(shè)計(jì)、分析及Matlab仿真(英文)》各部分內(nèi)容既相互聯(lián)系又相互獨(dú)立?!稒C(jī)械系統(tǒng)RBF神經(jīng)網(wǎng)絡(luò)控制:設(shè)計(jì)、分析及Matlab仿真(英文)》適用于從事生產(chǎn)過(guò)程自動(dòng)化、計(jì)算機(jī)應(yīng)用、機(jī)械電子和電氣自動(dòng)化領(lǐng)域工作的工程技術(shù)人員閱讀,也可作為大專(zhuān)院校工業(yè)自動(dòng)化、自動(dòng)控制、機(jī)械電子、自動(dòng)化儀表、計(jì)算機(jī)應(yīng)用等專(zhuān)業(yè)的教學(xué)參考書(shū)。

作者簡(jiǎn)介

暫缺《機(jī)械系統(tǒng)RBF神經(jīng)網(wǎng)絡(luò)控制:設(shè)計(jì)、分析及Matlab仿真(英文)》作者簡(jiǎn)介

圖書(shū)目錄

Contents Chapter 1 Introduction 1.1 Neural Network Control 1.1.1 Why Neural Network Control? 1.1.2 Review of Neural Network Control 1.1.3 Review of RBF Adaptive Control 1.2 Review of RBF Neural Network 1.3 RBF Adaptive Control for Robot Manipulators 1.4 S Function Design for Control System 1.4.1 S Function Introduction 1.4.2 Basic Parameters in S Function 1.4.3 Examples 1.5 An Example of a Simple Adaptive Control System 1.5.1 System Description 1.5.2 Adaptive Control Law Design 1.5.3 Simulation Example
References
Appendix Chapter 2 RBF Neural Network Design and Simulation 2.1 RBF Neural Network Design and Simulation 2.1.1 RBF Algorithm 2.1.2 RBF Design Example with Matlab Simulation 2.2  RBF Neural Network Approximation Based on Gradient Descent Method
2.2.1 RBF Neural Network Approximation 2.2.2 Simulation Example 2.3 Effect of Gaussian Function Parameters on RBF Approximation 2.4 Effect of Hidden Nets Number on RBF Approximation 2.5 RBF Neural Network Training for System Modeling 2.5.1 RBF Neural Network Training 2.5.2 Simulation Example 2.6 RBF Neural Network Approximation
References
Appendix Chapter 3 RBF Neural Network Control Based on Gradient Descent Algorithm
3.1  Supervisory Control Based on RBF Neural Network 3.1.1 RBF Supervisory Control 3.1.2 Simulation Example 3.2  RBFNN Based Model Reference Adaptive Control 3.2.1 Controller Design 3.2.2 Simulation Example 3.3  RBF Self-Adjust Control 3.3.1 System Description 3.3.2 RBF Controller Design 3.3.3 Simulation Example
References
Appendix Chapter 4 Adaptive RBF Neural Network Control 4.1  Adaptive Control Based on Neural Approximation 4.1.1 Problem Description 4.1.2 Adaptive RBF Controller Design 4.1.3 Simulation Examples 4.2  Adaptive Control Based on Neural Approximation with Unknown Parameter
4.2.1 Problem Description 4.2.2 Adaptive Controller Design 4.2.3 Simulation Examples 4.3  A Direct Method for Robust Adaptive Control by RBF 4.3.1 System Description 4.3.2 Desired Feedback Control and Function Approximation 4.3.3 Controller Design and Performance Analysis 4.3.4 Simulation Example
References
Appendix Chapter 5 Neural Network Sliding Mode Control 5.1  Typical Sliding Mode Controller Design 5.2  Sliding Mode Control Based on RBF for Second-Order SISO Nonlinear System
5.2.1 Problem Description 5.2.2 Sliding Mode Control Based on RBF for Unknown f().
5.2.3 Simulation Example 5.3  Sliding Mode Control Based on RBF for Unknown f(). and g().
5.3.1 Introduction 5.3.2 Simulation Example References
Appendix Chapter 6 Adaptive RBF Control Based on Global Approximation 6.1  Adaptive Control with RBF Neural Network Compensation for Robotic Manipulators
6.1.1  Problem Description 6.1.2  RBF Approximation 6.1.3  RBF Controller and Adaptive Law Design and Analysis 6.1.4  Simulation Examples 6.2  RBF Neural Robot Controller Design with Sliding Mode Robust Term
6.2.1  Problem Description 6.2.2  RBF Approximation 6.2.3  Control Law Design and Stability Analysis 6.2.4  Simulation Examples 6.3  Robust Control Based on RBF Neural Network with HJI 6.3.1  Foundation 6.3.2  Controller Design and Analysis 6.3.3 Simulation Examples
References
Appendix Chapter 7 Adaptive Robust RBF Control Based on Local Approximation
7.1  Robust Control Based on Nominal Model for Robotic Manipulators
7.1.1  Problem Description 7.1.2  Controller Design 7.1.3  Stability Analysis 7.1.4  Simulation Example 7.2  Adaptive RBF Control Based on Local Model Approximation for Robotic Manipulators
7.2.1  Problem Description 7.2.2  Controller Design 7.2.3  Stability Analysis 7.2.4  Simulation Examples 7.3  Adaptive Neural Network Control of Robot Manipulators in Task Space
7.3.1  Coordination Transformation from Task Space to Joint Space
7.3.2  Neural Network Modeling of Robot Manipulators 7.3.3  Controller Design 7.3.4 Simulation Examples
References
Appendix Chapter 8 Backstepping Control with RBF 8.1  Introduction 8.2  Backstepping Control for Inverted Pendulum 8.2.1  System Description 8.2.2  Controller Design 8.2.3  Simulation Example 8.3  Backstepping Control Based on RBF for Inverted Pendulum 8.3.1  System Description 8.3.2  Backstepping Controller Design 8.3.3  Adaptive Law Design 8.3.4  Simulation Example 8.4  Backstepping Control for Single Link Flexible Joint Robot 8.4.1  System Description 8.4.2  Backstepping Controller Design 8.5  Adaptive Backstepping Control with RBF for Single Link Flexible Joint Robot
8.5.1  Backstepping Controller Design with Function Estimation
8.5.2  Backstepping Controller Design with RBF Approximation
8.5.3 Simulation Examples
References
Appendix Chapter 9 Digital RBF Neural Network Control 9.1  Adaptive Runge-Kutta-Merson Method 9.1.1  Introduction 9.1.2  Simulation Example 9.2  Digital Adaptive Control for SISO System 9.2.1  Introduction 9.2.2  Simulation Example 9.3  Digital Adaptive RBF Control for Two Link Manipulators 9.3.1  Introduction 9.3.2 Simulation Example
References
Appendix Chapter 10 Discrete Neural Network Control 10.1  Introduction 10.2  Direct RBF Control for a Class of Discrete-time Nonlinear System
10.2.1 System Description 10.2.2 Controller Design and Stability Analysis 10.2.3 Simulation Examples 10.3  Adaptive RBF Control for a Class of Discrete-Time Nonlinear System
10.3.1 System Description 10.3.2 Traditional Controller Design 10.3.3 Adaptive Neural Network Controller Design 10.3.4 Stability Analysis 10.3.5 Simulation Examples
References
Appendix Chapter 11 Adaptive RBF Observer Design and Sliding Mode Control
11.1  Adaptive RBF observer design 11.1.1 System Description 11.1.2 Adaptive RBF Observer Design and Analysis 11.1.3 Simulation Examples 11.2  Sliding Mode Control Based on RBF Adaptive Observer 11.2.1 Sliding Mode Controller Design 11.2.2 Simulation Example
References
Appendix Index

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)