注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)h-原理引論(英文版)

h-原理引論(英文版)

h-原理引論(英文版)

定 價(jià):¥99.00

作 者: Y.Eliashberg,N.Mishachev 著
出版社: 高等教育出版社
叢編項(xiàng): 美國(guó)數(shù)學(xué)會(huì)經(jīng)典影音系列
標(biāo) 簽: 暫缺

購(gòu)買這本書(shū)可以去


ISBN: 9787040469028 出版時(shí)間: 2017-01-01 包裝: 精裝
開(kāi)本: 16開(kāi) 頁(yè)數(shù): 206 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  在微分幾何和拓?fù)鋵W(xué)中,人們常常處理偏微分等式和不等式組,它們不管加上什么邊界條件總有無(wú)窮多個(gè)解。在1950年代人們發(fā)現(xiàn),這種類型的微分關(guān)系(即等式或不等式)的可解性常??梢曰癁橐粋€(gè)純粹的具同倫論性質(zhì)的問(wèn)題。在此情形下人們說(shuō):相應(yīng)的微分關(guān)系滿足h-原理。h-原理的兩個(gè)著名例子是:黎曼幾何中Nash-Kuiper的Cl-等度嵌入理論和微分拓?fù)渲械腟male-Hirsch浸沒(méi)理論,它們后來(lái)被Gromov轉(zhuǎn)換為建立h-原理的強(qiáng)有力的一般方法。作者介紹了^一原理的兩個(gè)主要證明方法:完整性近似和凸積分。除了幾個(gè)著名的例外,h-原理的大部分例子都可以用這里的方法來(lái)處理?!睹绹?guó)數(shù)學(xué)會(huì)經(jīng)典影音系列:h-原理引論(英文版)》還特別強(qiáng)調(diào)了辛幾何和切觸幾何的應(yīng)用。Gromov的名著Partial Differential Relations是面向?qū)<业年P(guān)于h-原理的百科全書(shū),而《美國(guó)數(shù)學(xué)會(huì)經(jīng)典影音系列:h-原理引論(英文版)》則是第1本關(guān)于此理論及其應(yīng)用的能被廣泛接受的論著?!睹绹?guó)數(shù)學(xué)會(huì)經(jīng)典影音系列:h-原理引論(英文版)》是關(guān)于解偏微分等式和不等式幾何方法的一本很好的研究生教材。學(xué)習(xí)幾何、拓?fù)浜头治龅娜硕伎蓮闹猩钍荞砸妗?/div>

作者簡(jiǎn)介

暫缺《h-原理引論(英文版)》作者簡(jiǎn)介

圖書(shū)目錄

Preface
Intrigue
Part 1 Holonomic Approximation
Chapter 1. Jets and Holonomy
§1.1. Maps and sections
§1.2. Coordinate definition ofjets
§1.3. Invariant definition ofjets
§1.4. The space X (1)
§1.5. Holonomic sections of the jet space X (r)
§1.6. Geometric representation of sections of X (r)
§1.7. Holonomic splitting
Chapter 2. Thom Transversality Theorem
§2.1. Generic properties and transversality
§2.2. Stratified sets and polyhedra
§2.3. Thom Transversality Theorem
Chapter 3. Holonomic Approximation
§3.1. Main theorem
§3.2. Holonomic approximation over a cube
§3.3. Fiberwise holonomic sections
§3.4. Inductive Lemma
§3.5. Proof of the Inductive Lemma
§3.6. Holonomic approximation over a cube
§3.7. Parametric case
Chapter 4. Applications
§4.1. Functions without critical points
§4.2. Smale's sphere eversion
§4.3. Open manifolds
§4.4. Approximate integration of tangential homotopies
§4.5. Directed embeddings of open manifolds
§4.6. Directed embeddings of closed manifolds
§4.7. Approximation of differential forms by closed forms
Part 2 Differential Relations and Gromov's h-Principle
Chapter 5. Differential Relations
§5.1. What is a differential relation?
§5.2. Open and closed differential relations
§5.3. Formal and genuine solutions of a differential relation
§5.4. Extension problem
§5.5. Approximate solutions to systems of differential equations
Chapter 6. Homotopy Principle
§6.1. Philosophy of the h-principle
§6.2. Different flavors of the h-principle
Chapter 7. Open Diff V-Invariant Differential Relations
§7.1. Diff V-invariant differential relations
§7.2. Local h-principle for open Diff V-invariant relations
Chapter 8. Applications to Closed Manifolds
§8.1. Microextension trick
§8.2. Smale-Hirsch h-principle
§8.3. Sections transversal to distribution
Part 3 The Homotopy Principle in Symplectic Geometry
Chapter 9. Symplectic and Contact Basics
§9.1. Linear symplectic and complex geometries
§9.2. Symplectic and complex manifolds
……
Part 4 Convex Integration
Bibliography
Index
Copyright ? 讀書(shū)網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)