注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術(shù)計算機/網(wǎng)絡軟件與程序設計Python深度學習:基于TensorFlow

Python深度學習:基于TensorFlow

Python深度學習:基于TensorFlow

定 價:¥79.00

作 者: 吳茂貴 王冬 李濤 楊本法 著
出版社: 機械工業(yè)出版社
叢編項: 智能系統(tǒng)與技術(shù)叢書
標 簽: 暫缺

ISBN: 9787111609728 出版時間: 2018-10-01 包裝: 平裝
開本: 16開 頁數(shù): 329 字數(shù):  

內(nèi)容簡介

  本書共22章,分為三個部分。部分(第1~5章)為Python及應用數(shù)學基礎(chǔ)部分,介紹Python和TensorFlow的基石Numpy,深度學習框架的鼻祖Theano,以及機器學習、深度學習算法應用數(shù)學基礎(chǔ)等內(nèi)容。第二部分(第6~20章)為深度學習理論與應用部分,介紹機器學習的經(jīng)典理論和算法,深度學習理論及方法,TensorFlow基于CPU、GPU版本的安裝及使用、TensorFlow基礎(chǔ)、TensorFlow的一些新API,深度學習中神經(jīng)網(wǎng)絡方面的模型及TensorFlow實戰(zhàn)案例,TensorFlow的高級封裝,TensorFlow綜合實戰(zhàn)案例等內(nèi)容。第三部分(第21~22章)為擴展部分,介紹強化學習、生成式對抗網(wǎng)絡等內(nèi)容。

作者簡介

  作者簡介吳茂貴 BI和大數(shù)據(jù)專家,就職于中國外匯交易中心,在BI、數(shù)據(jù)挖掘與分析、數(shù)據(jù)倉庫、機器學習等領(lǐng)域有超過20年的工作經(jīng)驗,在Spark機器學習、TensorFlow深度學習領(lǐng)域大量的實踐經(jīng)驗。 王冬 任職于博世(中國)投資有限公司,負責Bosch企業(yè)BI及工業(yè)4.0相關(guān)大數(shù)據(jù)和數(shù)據(jù)挖掘項目。對機器學習、人工智能有多年實踐經(jīng)驗。 李濤 參與過多個人工智能項目,如研究開發(fā)服務機器人、無人售后店等項目。熟悉python、caffe、TensorFlow等,對深度學習、尤其對計算機視覺方面有較深理解。 楊本法 高級算法工程師,在機器學習、文本挖掘、可視化等領(lǐng)域有多年實踐經(jīng)驗。熟悉Hadoop、Spark生態(tài)圈的相關(guān)技術(shù),對Python有豐富的實戰(zhàn)經(jīng)驗。

圖書目錄

前言
第一部分 Python及應用數(shù)學基礎(chǔ)
第1章 NumPy常用操作 2
1.1 生成ndarray的幾種方式 3
1.2 存取元素 5
1.3 矩陣操作 6
1.4 數(shù)據(jù)合并與展平 7
1.5 通用函數(shù) 9
1.6 廣播機制 11
1.7 小結(jié) 12
第2章 Theano基礎(chǔ) 13
2.1 安裝 14
2.2 符號變量 15
2.3 符號計算圖模型 17
2.4 函數(shù) 18
2.5 條件與循環(huán) 21
2.6 共享變量 23
2.7 小結(jié) 24
第3章 線性代數(shù) 25
3.1 標量、向量、矩陣和張量 25
3.2 矩陣和向量運算 28
3.3 特殊矩陣與向量 29
3.4 線性相關(guān)性及向量空間 31
3.5 范數(shù) 32
3.6 特征值分解 33
3.7 奇異值分解 34
3.8 跡運算 35
3.9 實例:用Python實現(xiàn)主成分分析 36
3.10 小結(jié) 39
第4章 概率與信息論 40
4.1 為何要學概率、信息論 40
4.2 樣本空間與隨機變量 41
4.3 概率分布 42
4.3.1 離散型隨機變量 42
4.3.2 連續(xù)型隨機變量 45
4.4 邊緣概率 47
4.5 條件概率 47
4.6 條件概率的鏈式法則 48
4.7 獨立性及條件獨立性 48
4.8 期望、方差及協(xié)方差 49
4.9 貝葉斯定理 52
4.10 信息論 53
4.11 小結(jié) 56
第5章 概率圖模型 57
5.1 為何要引入概率圖 57
5.2 使用圖描述模型結(jié)構(gòu) 58
5.3 貝葉斯網(wǎng)絡 59
5.3.1 隱馬爾可夫模型簡介 60
5.3.2 隱馬爾可夫模型三要素 60
5.3.3 隱馬爾可夫模型三個基本問題 61
5.3.4 隱馬爾可夫模型簡單實例 62
5.4 馬爾可夫網(wǎng)絡 64
5.4.1 馬爾可夫隨機場 64
5.4.2 條件隨機場 65
5.4.3 實例:用Tensorflow實現(xiàn)條件隨機場 66
5.5 小結(jié) 70
第二部分 深度學習理論與應用
第6章 機器學習基礎(chǔ) 72
6.1 監(jiān)督學習 72
6.1.1 線性模型 73
6.1.2 SVM 77
6.1.3 貝葉斯分類器 79
6.1.4 集成學習 81
6.2 無監(jiān)督學習 84
6.2.1 主成分分析 84
6.2.2 k-means聚類 84
6.3 梯度下降與優(yōu)化 85
6.3.1 梯度下降簡介 86
6.3.2 梯度下降與數(shù)據(jù)集大小 87
6.3.3 傳統(tǒng)梯度優(yōu)化的不足 89
6.3.4 動量算法 90
6.3.5 自適應算法 92
6.3.6 有約束最優(yōu)化 95
6.4 前饋神經(jīng)網(wǎng)絡 96
6.4.1 神經(jīng)元結(jié)構(gòu) 97
6.4.2 感知機的局限 98
6.4.3 多層神經(jīng)網(wǎng)絡 99
6.4.4 實例:用TensorFlow實現(xiàn)XOR 101
6.4.5 反向傳播算法 103
6.5 實例:用Keras構(gòu)建深度學習架構(gòu) 109
6.6 小結(jié) 109
第7章 深度學習挑戰(zhàn)與策略 110
7.1 正則化 110
7.1.1 正則化參數(shù) 111
7.1.2 增加數(shù)據(jù)量 115
7.1.3 梯度裁剪 116
7.1.4 提前終止 116
7.1.5 共享參數(shù) 117
7.1.6 Dropout 117
7.2 預處理 119
7.2.1 初始化 120
7.2.2 歸一化 120
7.3 批量化 121
7.3.1 隨機梯度下降法 121
7.3.2 批標準化 122
7.4 并行化 124
7.4.1 TensorFlow利用GPU加速 124
7.4.2 深度學習并行模式 125
7.5 選擇合適的激活函數(shù) 127
7.6 選擇合適代價函數(shù) 128
7.7 選擇合適的優(yōu)化算法 129
7.8 小結(jié) 130
第8章 安裝TensorFlow 131
8.1 TensorFlow CPU版的安裝 131
8.2 TensorFlow GPU版的安裝 132
8.3 配置Jupyter Notebook 136
8.4 實例:CPU與GPU性能比較 137
8.5 實例:單GPU與多GPU性能比較 138
8.6 小結(jié) 140
第9章 TensorFlow基礎(chǔ) 141
9.1 TensorFlow系統(tǒng)架構(gòu) 141
9.2 數(shù)據(jù)流圖 143
9.3 TensorFlow基本概念 144
9.3.1 張量 144
9.3.2 算子 145
9.3.3 計算圖 146
9.3.4 會話 146
9.3.5 常量 148
9.3.6 變量 149
9.3.7 占位符 153
9.3.8 實例:比較constant、variable和placeholder 154
9.4 TensorFlow實現(xiàn)數(shù)據(jù)流圖 156
9.5 可視化數(shù)據(jù)流圖 156
9.6 TensorFlow分布式 158
9.7 小結(jié) 160
第10章 TensorFlow圖像處理 162
10.1 加載圖像 162
10.2 圖像格式 163
10.3 把圖像轉(zhuǎn)換為TFRecord文件 164
10.4 讀取TFRecord文件 165
10.5 圖像處理實例 166
10.6 全新的數(shù)據(jù)讀取方式—Dataset API 170
10.6.1 Dataset API 架構(gòu) 170
10.6.2 構(gòu)建Dataset 171
10.6.3 創(chuàng)建迭代器 174
10.6.4 從迭代器中獲取數(shù)據(jù) 174
10.6.5 讀入輸入數(shù)據(jù) 175
10.6.6 預處理數(shù)據(jù) 175
10.6.7 批處理數(shù)據(jù)集元素 176
10.6.8 使用高級API 176
10.7 小結(jié) 177
第11章 TensorFlow神經(jīng)元函數(shù) 178
11.1 激活函數(shù) 178
11.1.1 sigmoid函數(shù) 179
11.1.2 tanh函數(shù) 179
11.1.3 relu函數(shù) 180
11.1.4 softplus函數(shù) 181
11.1.5 dropout函數(shù) 181
11.2 代價函數(shù) 181
11.2.1 sigmoid_cross_entropy_with_logits函數(shù) 182
11.2.2 softmax_cross_entropy_with_logits函數(shù) 183
11.2.3 sparse_softmax_cross_entropy_with_logits函數(shù) 184
11.2.4 weighted_cross_entropy_with_logits函數(shù) 184
11.3 小結(jié) 185
第12章 TensorFlow自編碼器 186
12.1 自編碼簡介 186
12.2 降噪自編碼 188
12.3 實例:TensorFlow實現(xiàn)自編碼 188
12.4 實例:用自編碼預測信用卡欺詐 191
12.5 小結(jié) 197
第13章 TensorFlow實現(xiàn)Word2Vec 198
13.1 詞向量及其表達 198
13.2 Word2Vec原理 199
13.2.1 CBOW模型 200
13.2.2 Skim-gram模型 200
13.3 實例:TensorFlow實現(xiàn)Word2Vec 201
13.4 小結(jié) 206
第14章 TensorFlow卷積神經(jīng)網(wǎng)絡 207
14.1 卷積神經(jīng)網(wǎng)絡簡介 207
14.2 卷積層 208
14.2.1 卷積核 209
14.2.2 步幅 211
14.2.3 填充 212
14.2.4 多通道上的卷積 213
14.2.5 激活函數(shù) 214
14.2.6 卷積函數(shù) 215
14.3 池化層 216
14.4 歸一化層 217
14.5 TensorFlow實現(xiàn)簡單卷積神經(jīng)網(wǎng)絡 218
14.6 TensorFlow實現(xiàn)進階卷積神經(jīng)網(wǎng)絡 219
14.7 幾種經(jīng)典卷積神經(jīng)網(wǎng)絡 223
14.8 小結(jié) 224
第15章 TensorFlow循環(huán)神經(jīng)網(wǎng)絡 226
15.1 循環(huán)神經(jīng)網(wǎng)絡簡介 226
15.2 前向傳播與隨時間反向傳播 228
15.3 梯度消失或爆炸 231
15.4 LSTM算法 232
15.5 RNN其他變種 235
15.6 RNN應用場景 236
15.7 實例:用LSTM實現(xiàn)分類 237
15.8 小結(jié) 241
第16章 TensorFlow高層封裝 242
16.1 TensorFlow高層封裝簡介 242
16.2 Estimator簡介 243
16.3 實例:使用Estimator預定義模型 245
16.4 實例:使用Estimator自定義模型 247
16.5 Keras簡介 252
16.6 實例:Keras實現(xiàn)序列式模型 253
16.7 TFLearn簡介 255
16.7.1 利用TFLearn解決線性回歸問題 256
16.7.2 利用TFLearn進行深度學習 256
16.8 小結(jié) 257
第17章 情感分析 258
17.1 深度學習與自然語言處理 258
17.2 詞向量簡介 259
17.3 循環(huán)神經(jīng)網(wǎng)絡 260
17.4 遷移學習簡介 261
17.5 實例:TensorFlow實現(xiàn)情感分析 262
17.5.1 導入數(shù)據(jù) 262
17.5.2 定義輔助函數(shù) 267
17.5.3 構(gòu)建RNN模型 267
17.5.4 調(diào)優(yōu)超參數(shù) 269
17.5.5 訓練模型 270
17.6 小結(jié) 272
第18章 利用TensorFlow預測乳腺癌 273
18.1 數(shù)據(jù)說明 273
18.2 數(shù)據(jù)預處理 274
18.3 探索數(shù)據(jù) 276
18.4 構(gòu)建神經(jīng)網(wǎng)絡 279
18.5 訓練并評估模型 281
18.6 小結(jié) 283
第19章 聊天機器人 284
19.1 聊天機器人原理 284
19.2 帶注意力的框架 286
19.3 用TensorFlow實現(xiàn)聊天機器人 289
19.3.1 接口參數(shù)說明 290
19.3.2 訓練模型 293
19.4 小結(jié) 302
第20章 人臉識別 303
20.1 人臉識別簡介 303
20.2 項目概況 306
20.3 實施步驟 307
20.3.1 數(shù)據(jù)準備 307
20.3.2 預處理數(shù)據(jù) 307
20.3.3 訓練模型 309
20.3.4 測試模型 313
20.4 小結(jié) 316
第三部分 擴展篇
第21章 強化學習基礎(chǔ) 318
21.1 強化學習簡介 318
21.2 強化學習常用算法 320
21.2.1 Q-Learning算法 320
21.2.2 Sarsa算法 322
21.2.3 DQN算法 322
21.3 小結(jié) 324
第22章 生成式對抗網(wǎng)絡 325
22.1 GAN簡介 325
22.2 GAN的改進版本 327
22.3 小結(jié) 329

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號