注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)數(shù)值最優(yōu)化(第二版)

數(shù)值最優(yōu)化(第二版)

數(shù)值最優(yōu)化(第二版)

定 價:¥198.00

作 者: [美] 喬治·勞斯特(Jorge Nocedal),[美] 斯蒂芬·J.瑞特(Stephen J.Wright) 著
出版社: 科學(xué)出版社
叢編項: 國外數(shù)學(xué)名著系列
標(biāo) 簽: 暫缺

ISBN: 9787030605511 出版時間: 2019-02-01 包裝: 精裝
開本: 16開 頁數(shù): 692 字?jǐn)?shù):  

內(nèi)容簡介

  無

作者簡介

暫缺《數(shù)值最優(yōu)化(第二版)》作者簡介

圖書目錄

Contents
Preface
prefcetothe Second Edition
1 Introduction 1
Mathematical Formulation 2
Example:A Transportation Problem 4
Continuous versus Discrete Optimization 5
Constrained and Unconstrained Optimization 6
Global and Local Optimization 6
Stocbastic and Deterministic Optimization 7
Convexity 7
Optimization Algorithms 8
Notes and References 9
2 Fundamentals of Unconstrained Optimization 10
2.1 What ls a Solution? 12
Recognizing a Local Minimum 14
Nonsmooth Problems 17
2.2 Overview of A1gorithms 18
Two Strategies:Line Search and Trust Region 19
Search Directions for Line Search Methods 20
Models for Trust-Region Methods 25
Scaling 26
Exercises 27
3 Line Search Methods 30
3.1 Step Length 31
The Wolfe Conditions 33
The Goldstein Conditions 36
Sufficient Decrease and Backtracking 37
3.2 Convergence of Line Search Methods 37
3.3 Rate of Convergence 41
Convergence Rate of Steepest Descent 42
Newton's Method 44
Quasi-Newton Methods 46
3.4 Newton's Method with Hessian Modification 48
Eigenvalue Modification 49
Adding a Multiple of the ldentity 51
Modified Cholesky Factorization 52
Modified Symmetric Indefinite Factorization 54
3.5 Step-Length Selection Algorithms 56
lnterpolation 57
lnitial Step Length 59
A Line Search A1gorithm for the Wolfe Conditions 60
Notes and References 62
Exercises 63
4 Trust-Region Methods 66
Outline of the Trust-Region Approach 68
4.1 A1gorithms Based on the Cauchy Point 71
The Cauchy Point 71
lmpro時ng on the Cauchy Point 73
The Dogleg Method 73
Two-Dinlensional Subspace Mininlization 76
4.2 Global Convergence 77
Reduction Obtained by the Cauchy Point 77
Convergence to Stationary Points 79
4.3 lterative Solution of the Subproblem 83
The Hard Case 87
Proof of Theorem 4.1 89
Convergence of Algorithms Based on Nearly Exact Solutions 91
4.4 Local Convergence ofTrust-Region Newton Methods 92
4.5 0ther Enhancements 95
Scaling 95
Trust Regions in 0ther Norms 97
Notes and References 98
Exercises 98
5 Conjugate Gradient Methods 101
5.1 The linear Conjugate Gradient Method 102
Conjugate Direction Methods 102
Basic Properties of thee Conjugate Gradient Method 107
A Practical Form of the Conjugate Gradient Method 111
Rate of Convergence 112
Preconditioning 118
Practical Preconditioners 120
5.2 Nonlinear Conjugate Gradient Methods 121
The Fletcher-Reeves Method 121
The Polak-Ribière Method and Variants 122
Quadratic Termination and Restarts 124
Behavior of the Fletcher-Reeves Method 125
Global Convergence 127
Numerical Performance 131
Notes and Reference 132
Exercises 133
6 Quasi-Newton Methods 135
6.1 The BFGS Method 136
Properties ofthe BFGS Method 141
Implementation 142
6.2 The SR1 Method 144
Properties of SR1 Updating 147
6.3 The Broyden Class 149
6.4 Convergence Analysis 153
Global Convergence of the BFGS Method 153
Superlinear Convergence of the BFGS Method 156
Convergence Analysis of the SR1 Method 160
Notes and References 161
Exercises 162
7 Large-Scale Unconstrained optimization 164
7.1 lnexact Newton Methods 165
Local Convergence of Inexact Newton Methods 166
Line Search Newton-CG Method 168
Trust-Region Newton-CG Method 170
Preconditioning the Trust-Region Newton-CG Method 174
Trust-Region Newton-Lanczos Method 175
7.2 Limited-Memory Quasi-Newton Methods 176
Limited-Memory BFGS 177
Relationship with Conjugate Gradient Methods 180
General Lirnited:d-Memory Updatiug 181
Compact Representation of BFGS Updating 181
Unrolling the Update 184
7.3 Sparse Quasi-Newton Updates 185
7.4 Algorithms for Partially Separable Fnnctions 186
7.5 Perspectives and Sotrware 189
Notes and References 190
Exercises 191
8 Calculating Derivatives 193
8.1 Finite-Difference Derivative Approximations 194
Approximating the Gradient 195
Approximating a Sparse Jacobian 197
Approximatiug the Hessian 201
Approximatiug a Sparse Hessian 202
8.2 Automatic Differentiation 204
Au Example 205
The Forward Mode 206
The Reverse Mode 207
Vector Fnnctions and Partial Separablity 210
Calculating Jacobians ofVector Funlctions 212
Calculating Hessians:Forward Mode 213
Calculating Hessians:Reverse Mode 215
Current Lirnitations 216
Notess and References 217
Exercises 217
9 Derivatve-Free Optiimization 220
9.1 Finite Differences and Noise 221
9.2 Model-Based Methods 223
Interpolation aod Polyoomial Bases 226
Updating the Interpolation Set 227
A Method Based on Minimum-Change Updating 228
9.3 Coordinate and Pattern-Search Methods 229
Coordinate Search Method 230
Pattern-Search Methods 231
9.4 A Conjugate-Direction Method 234
9.5 Nelder-Mead Method 238
9.6 Implicit Filtering 240
Notes and References 242
Exercises 242
10

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號