注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)工業(yè)技術(shù)一般工業(yè)技術(shù)Plasmon and Plasmon-Exciton Hybrids for Surface

Plasmon and Plasmon-Exciton Hybrids for Surface

Plasmon and Plasmon-Exciton Hybrids for Surface

定 價(jià):¥109.00

作 者: 孫萌濤,王鑫鑫,宗歡 著
出版社: 清華大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

購(gòu)買(mǎi)這本書(shū)可以去


ISBN: 9787302518570 出版時(shí)間: 2019-06-01 包裝: 平裝
開(kāi)本: 16 頁(yè)數(shù): 258 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  本書(shū)是基于作者多年在表面等離激元催化領(lǐng)域的科研成果,結(jié)合本領(lǐng)域的前沿科技進(jìn)展,詳述了表面等離激元-激子雜化在表面等離激元雜化領(lǐng)域的科研進(jìn)展,詳細(xì)全面地系統(tǒng)介紹。

作者簡(jiǎn)介

  主要從事基于表面等離激元增強(qiáng)的分子拉曼光譜的實(shí)驗(yàn)和理論研究。實(shí)現(xiàn)高真空針尖增強(qiáng)拉曼光譜儀,實(shí)現(xiàn)目標(biāo)分子拉曼光譜的超靈敏檢測(cè),并揭示表面等離激元增強(qiáng)拉曼光譜的物理和化學(xué)機(jī)制。以通訊作者(或d一作者)在國(guó)際重要學(xué)術(shù)期刊上發(fā)表SCI 論文超過(guò)180 篇(其中ESI 高引論文8篇)。所有論文引用約5500多次,H-index 40。Researcher ID: B-1131-2008。10次應(yīng)邀在國(guó)際重要期刊撰寫(xiě)本領(lǐng)域的綜述。應(yīng)邀撰寫(xiě)英文專(zhuān)著(科學(xué)出版社)2 本(d一作者)。2016 年,獲遼寧省科學(xué)技術(shù)(自然科學(xué))二等獎(jiǎng)(個(gè)人第二)。2015 年,獲遼寧省科學(xué)技術(shù)(自然科學(xué))三等獎(jiǎng)(個(gè)人第五)。

圖書(shū)目錄

CONTENTS

CONTENTS
CHAPTER 1Introduction

CHAPTER 2SPDriven Oxidation Catalytic Reactions

2.1SPDriven Oxidation Catalytic Reactions by SERS in
Atmosphere Environment

2.1.1Genuine SERS Spectrum of PATP

2.1.2SPDriven Oxidation Catalytic Reactions of PATP

2.1.3SPDriven Oxidation Catalytic Reactions on Metal/
Semiconductor Hybrids

2.2SPDriven Oxidation Catalytic Reactions by SERS in
Aqueous Environment

2.3SPDriven Oxidation Catalytic Reactions by TERS in
Ambient Environment

2.4SPDriven Oxidation Catalytic Reactions by TERS in
HV Environment

CHAPTER 3SPDriven Reduction Catalytic Reactions

3.1SPDriven Reduction Catalytic Reactions in Atmosphere
Environment

3.1.1SPDriven Reduction Catalytic Reactions by SERS in
Atmosphere Environment

3.1.2SPDriven Reduction Catalytic Reactions on Metal/
Semiconductor Hybrids

3.2SPDriven Reduction Catalytic Reactions by SERS in
Aqueous Environment

3.2.1Setup of Electrochemical SERS

3.2.2PotentialDependent Plasmon Driven Sequential
Chemical Reactions

3.2.3pHDependent Plasmon Driven Sequential Chemical
Reactions

3.2.4Electrooptical Tuning of Plasmon Driven Double
Reduction Interface Catalysis

3.3The Stability of Plasmon Driven Reduction Catalytic Reactions
in Aqueous and Atmosphere Environment

3.4SPDriven Reduction Catalytic Reactions by TERS

3.4.1SPDriven Reduction Catalytic Reactions by TERS in
Ambient Environment

3.4.2SPDriven Reduction Catalytic Reactions by TERS in
HV Environment

3.4.3Plasmon Hot Electrons or Thermal Effect on SPDriven
Reduction Catalytic Reactions in HV Environment

CHAPTER 4Photo or Plasmon Induced Oxidized and Reduced
Reactions

CHAPTER 5The Priority of Plasmon Driven Reduction or
Oxidation Reactions
5.1Plasmon Driven DiazoCoupling Reactions in Atmosphere
Environment

5.1.1Characterization of SERS and GrapheneMediated
SERS Substrate

5.1.2Selective Reduction Reactions of PNA on the Ag NPs
in Atmosphere Environment

5.1.3Selective Reduction Reactions of PNA on the Surface
of GAg NPs Hybrids in Atmosphere Environment

5.1.4Hot ElectronInduced Reduction Reactions of PNA
on GAg NWs Hybrids in Atmosphere Environment

5.2The Priority of Plasmon Driven Reduction or Oxidation in
Aqueous Environment

5.3The Priority of Plasmon Driven Reduction or Oxidation in
HV Environment

CHAPTER 6Plasmon Exciton Coupling Interaction for Surface
Catalytic Reactions
61Plasmon Exciton Coupling Interaction for Surface Oxidation
Catalytic Reactions

6.1.1Characterization of Ag NPsTiO2 Film Hybrids

6.1.2Ag NPsTiO2 Film Hybrids for Plasmon Exciton
Codriven Surface Oxidation Catalytic Reactions

6.1.3Plasmon Exciton Coupling of Ag NPsTiO2 Film
Hybrids Studied by SERS Spectroscopy

6.1.4Plasmon Exciton Coupling of Ag NPsTiO2 Film
Hybrids for Surface Oxidation Catalytic Reactions
under Various Environments

6.2Plasmon Exciton Coupling Interaction for Surface Reduction
Catalytic Reactions

6.2.1Plasmon Exciton Coupling of Monolayer MoS2Ag NPs
Hybrids for Surface Reduction Catalytic Reactions

6.2.2Ultrafast Dynamics of Plasmon Exciton Coupling
Interaction of GAg NWs Hybrids for Surface
Reduction Catalytic Reactions

6.2.3Surface Reduction Catalytic Reactions on GSERS in
Electrochemical Environment

6.3Unified Treatment for Plasmon Exciton Codriven Reduction
and Oxidation Reactions

CHAPTER 7Plasmon Exciton Coupling Interaction by Femtosecond
PumpProbe Transient Absorption Spectroscopy
7.1FemtosecondResolved Plasmon Exciton Coupling
Interaction of GAg NWs Hybrids

7.1.1FemtosecondResolved Plasmonic Dynamics of
Ag NWs

7.1.2FemtosecondResolved Plasmonic Dynamics of
Single Layer Graphene

7.1.3FemtosecondResolved Plasmonic Dynamics of
Plasmon Exciton Coupling Interaction of GAg
NWs Hybrids

7.2Physical Mechanism on Plasmon Exciton Coupling Interaction
Revealed by Femtosecond PumpProbe Transient Absorption
Spectroscopy

CHAPTER 8Electrically Enhanced Plasmon Exciton Coupling
Interaction for Surface Catalytic Reactions
8.1Electrooptical Synergy on Plasmon ExcitonCodriven Surface
Reduction Catalytic Reactions

8.1.1Plasmon Exciton Coupling Interaction of Monolayer
GAg NPs

8.1.2Electrical Properties of Plasmon Exciton
Coupling Device

8.1.3Plasmon ExcitonCodriven Surface Reduction
Catalytic Reactions

8.1.4BiasVoltageDependent Plasmon Exciton Codriven
Surface Reduction Catalytic Reactions

8.1.5GateVoltageDependent Plasmon Exciton Codriven
Surface Reduction Catalytic Reactions


8.2Electrically Enhanced Hot Hole Driven Surface Oxidation
Catalytic Reactions

CHAPTER 9Plasmon Waveguide Driven Chemical Reactions

9.1Plasmon Waveguide for Remote Excitation

9.1.1Features of Remote Excitation SERS and Early
Application

9.1.2Remote Excitation Plasmon Driven Chemical
Reactions

9.2Remote Excitation PolarizationDependent Surface
Photochemical Reactions by Plasmon Waveguide

9.3RemoteExcitation TimeDependent Surface Catalytic
Reactions by Plasmon Waveguide

CHAPTER 10Plasmon Driven Dissociation

10.1Resonant Dissociation of Surface Adsorbed Molecules by
Plasmonic Nanoscissors

10.2Plasmonic Nanoscissors for Molecular Design

10.3Plasmon Driven Dissociation of H2

10.3.1Plasmon Driven Dissociation of H2 on Au

10.3.2Plasmon Driven Dissociation of H2 on Aluminum
Nanocrystal

10.4Plasmon Driven Dissociation of N2

10.5Plasmon Driven Water Splitting

10.5.1Plasmon Driven Water Splitting under Visible
Illumination

10.5.2An autonomous photosynthetic device of
Plasmon Driven Water Splitting

10.6Plasmon Driven Dissociation of CO2

10.7RealSpace and RealTime Observation of a Plasmon
Induced Chemical Reactions of a Single Molecule

10.8Competition between Reactions and Degradation Pathways
in Plasmon Driven Photochemistry

CHAPTER 11Summary and Outlook

Acknowledgements

References

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)