注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)工具書(shū)計(jì)算機(jī)工具書(shū)計(jì)算機(jī)體系結(jié)構(gòu):量化研究方法(英文版·原書(shū)第6版)

計(jì)算機(jī)體系結(jié)構(gòu):量化研究方法(英文版·原書(shū)第6版)

計(jì)算機(jī)體系結(jié)構(gòu):量化研究方法(英文版·原書(shū)第6版)

定 價(jià):¥269.00

作 者: [美] 約翰·L.亨尼斯(John L.Hennessy) 著
出版社: 機(jī)械工業(yè)出版社
叢編項(xiàng): 經(jīng)典原版書(shū)庫(kù)
標(biāo) 簽: 暫缺

購(gòu)買(mǎi)這本書(shū)可以去


ISBN: 9787111631101 出版時(shí)間: 2019-07-01 包裝: 平裝
開(kāi)本: 16開(kāi) 頁(yè)數(shù): 617 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  文藝復(fù)興以來(lái),源遠(yuǎn)流長(zhǎng)的科學(xué)精神和逐步形成的學(xué)術(shù)規(guī)范,使西方國(guó)家在自然科學(xué)的各個(gè)領(lǐng)域取得了壟斷性的優(yōu)勢(shì);也正是這樣的優(yōu)勢(shì),使美國(guó)在信息技術(shù)發(fā)展的六十多年間名家輩出、獨(dú)領(lǐng)風(fēng)騷。在商業(yè)化的進(jìn)程中,美國(guó)的產(chǎn)業(yè)界與教育界越來(lái)越緊密地結(jié)合,計(jì)算機(jī)學(xué)科中的許多泰山北斗同時(shí)身處科研和教學(xué)的前線,由此而產(chǎn)生的經(jīng)典科學(xué)著作,不僅擘劃了研究的范疇,還揭示了學(xué)術(shù)的源變,既遵循學(xué)術(shù)規(guī)范,又自有學(xué)者個(gè)性,其價(jià)值并不會(huì)因年月的流逝而減退。近年,在全球信息化大潮的推動(dòng)下,我國(guó)的計(jì)算機(jī)產(chǎn)業(yè)發(fā)展迅猛,對(duì)專(zhuān)業(yè)人才的需求日益迫切。這對(duì)計(jì)算機(jī)教育界和出版界都既是機(jī)遇,也是挑戰(zhàn);而專(zhuān)業(yè)教材的建設(shè)在教育戰(zhàn)略上顯得舉足輕重。在我國(guó)信息技術(shù)發(fā)展時(shí)間較短的現(xiàn)狀下,美國(guó)等發(fā)達(dá)國(guó)家在其計(jì)算機(jī)科學(xué)發(fā)展的幾十年間積淀和發(fā)展的經(jīng)典教材仍有許多值得借鑒之處。因此,引進(jìn)一批國(guó)外優(yōu)秀計(jì)算機(jī)教材將對(duì)我國(guó)計(jì)算機(jī)教育事業(yè)的發(fā)展起到積極的推動(dòng)作用,也是與世界接軌、建設(shè)真正的世界一流大學(xué)的必由之路?!坝?jì)算機(jī)科學(xué)叢書(shū)”的出版工作得到了國(guó)內(nèi)外學(xué)者的鼎力相助,國(guó)內(nèi)的專(zhuān)家不僅提供了中肯的選題指導(dǎo),還不辭勞苦地?fù)?dān)任了翻譯和審校的工作;而原書(shū)的作者也相當(dāng)關(guān)注其作品在中國(guó)的傳播,有的還專(zhuān)門(mén)為其書(shū)的中譯本作序。迄今,“計(jì)算機(jī)科學(xué)叢書(shū)”已經(jīng)出版了近500個(gè)品種,這些書(shū)籍在讀者中樹(shù)立了良好的口碑,并被許多高校采用為正式教材和參考書(shū)籍。其影印版“經(jīng)典原版書(shū)庫(kù)”作為姊妹篇也被越來(lái)越多實(shí)施雙語(yǔ)教學(xué)的學(xué)校所采用。

作者簡(jiǎn)介

  約翰·L.亨尼斯(John L.Hennessy),Hennessy與Patterson共同榮獲了2017年度“圖靈獎(jiǎng)”,以表彰他們?cè)谟?jì)算機(jī)體系結(jié)構(gòu)領(lǐng)域的開(kāi)創(chuàng)性貢獻(xiàn)。Hennessy現(xiàn)為Google母公司Alphabet的董事長(zhǎng),之前曾任斯坦福大學(xué)第十任校長(zhǎng)。他是IEEE和ACM會(huì)士,美國(guó)國(guó)家工程院、國(guó)家科學(xué)院、美國(guó)哲學(xué)院以及美國(guó)藝術(shù)與科學(xué)院院士。他于1981年開(kāi)始研究MIPS項(xiàng)目,之后創(chuàng)辦MIPS Computer Systems公司,開(kāi)發(fā)了商用RISC微處理器之一。他還領(lǐng)導(dǎo)了DASH項(xiàng)目,設(shè)計(jì)了一個(gè)可擴(kuò)展cache-致性多處理器原型。戴維·A.帕特森(David A.Patterson),Patterson與Hennessy共同榮獲了2017年度“圖靈獎(jiǎng)”。Patterson現(xiàn)為Google杰出工程師,之前為加州大學(xué)伯克利分校教授。他曾任ACM主席一職,目前是ACM和IEEE會(huì)士,美國(guó)藝術(shù)與科學(xué)院和計(jì)算機(jī)歷史博物館院士,并入選了美國(guó)國(guó)家工程院、國(guó)家科學(xué)院和硅谷工程名人堂。他領(lǐng)導(dǎo)了RISC I的設(shè)計(jì)與實(shí)現(xiàn)工作,并且是RAID項(xiàng)目的領(lǐng)導(dǎo)者。

圖書(shū)目錄

Chapter 1 Fundamentals of Quantitative Design and Analysis
1.1 Introduction 2
1.2 Classes of Computers 6
1.3 Defining Computer Architecture 11
1.4 Trends in Technology 18
1.5 Trends in Power and Energy in Integrated Circuits 23
1.6 Trends in Cost 29
1.7 Dependability 36
1.8 Measuring, Reporting, and Summarizing Performance 39
1.9 Quantitative Principles of Computer Design 48
1.10 Putting It All Together: Performance, Price, and Power 55
1.11 Fallacies and Pitfalls 58
1.12 Concluding Remarks 64
1.13 Historical Perspectives and References 67
Case Studies and Exercises by Diana Franklin 67
Chapter 2 Memory Hierarchy Design
2.1 Introduction 78
2.2 Memory Technology and Optimizations 84
2.3 Ten Advanced Optimizations of Cache Performance 94
2.4 Virtual Memory and Virtual Machines 118
2.5 Cross-Cutting Issues: The Design of Memory Hierarchies 126
2.6 Putting It All Together: Memory Hierarchies in the ARM Cortex-A53 and Intel Core i7 6700 129
2.7 Fallacies and Pitfalls 142
2.8 Concluding Remarks: Looking Ahead 146
2.9 Historical Perspectives and References 148
Case Studies and Exercises by Norman P. Jouppi, Rajeev
Balasubramonian, Naveen Muralimanohar, and Sheng Li

Chapter 3 Instruction-Level Parallelism and Its Exploitation
3.1 Instruction-Level Parallelism: Concepts and Challenges 168
3.2 Basic Compiler Techniques for Exposing ILP 176
3.3 Reducing Branch Costs With Advanced Branch Prediction 182
3.4 Overcoming Data Hazards With Dynamic Scheduling 191
3.5 Dynamic Scheduling: Examples and the Algorithm 201
3.6 Hardware-Based Speculation 208
3.7 Exploiting ILP Using Multiple Issue and Static Scheduling 218
3.8 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation 222
3.9 Advanced Techniques for Instruction Delivery and Speculation 228
3.10 Cross-Cutting Issues 240
3.11 Multithreading: Exploiting Thread-Level Parallelism to Improve Uniprocessor Throughput 242
3.12 Putting It All Together: The Intel Core i7 6700 and ARM Cortex-A53 247
3.13 Fallacies and Pitfalls 258
3.14 Concluding Remarks: What’s Ahead? 264
3.15 Historical Perspective and References 266
Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell 266
Chapter 4 Data-Level Parallelism in Vector, SIMD, and GPU Architectures
4.1 Introduction 282
4.2 Vector Architecture 283
4.3 SIMD Instruction Set Extensions for Multimedia 304
4.4 Graphics Processing Units 310
4.5 Detecting and Enhancing Loop-Level Parallelism 336
4.6 Cross-Cutting Issues 345
4.7 Putting It All Together: Embedded Versus Server GPUs and Tesla Versus Core i7 346
4.8 Fallacies and Pitfalls 353
4.9 Concluding Remarks 357
4.10 Historical Perspective and References 357
Case Study and Exercises by Jason D. Bakos 357
Chapter 5 Thread-Level Parallelism
5.1 Introduction 368
5.2 Centralized Shared-Memory Architectures 377
5.3 Performance of Symmetric Shared-Memory Multiprocessors 393
5.4 Distributed Shared-Memory and Directory-Based Coherence 404
5.5 Synchronization: The Basics 412
5.6 Models of Memory Consistency: An Introduction 417
5.7 Cross-Cutting Issues 422
5.8 Putting It All Together: Multicore Processors and Their Performance 426
5.9 Fallacies and Pitfalls 438
5.10 The Future of Multicore Scaling 442
5.11 Concluding Remarks 444
5.12 Historical Perspectives and References 445
Case Studies and Exercises by Amr Zaky and David A. Wood 446
Chapter 6 Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism
6.1 Introduction 466
6.2 Programming Models and Workloads for Warehouse-Scale Computers 471
6.3 Computer Architecture of Warehouse-Scale Computers 477
6.4 The Efficiency and Cost of Warehouse-Scale Computers 482
6.5 Cloud Computing: The Return of Utility Computing 490
6.6 Cross-Cutting Issues 501
6.7 Putting It All Together: A Google Warehouse-Scale Computer 503
6.8 Fallacies and Pitfalls 514
6.9 Concluding Remarks 518
6.10 Historical Perspectives and References 519
Case Studies and Exercises by Par

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)