注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)線性代數(shù)(第5版)

線性代數(shù)(第5版)

線性代數(shù)(第5版)

定 價(jià):¥108.00

作 者: [美] Gilbert Strang 著
出版社: 清華大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

購(gòu)買這本書可以去


ISBN: 9787302535560 出版時(shí)間: 2019-08-01 包裝: 平裝
開(kāi)本: 16開(kāi) 頁(yè)數(shù): 573 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  線性代數(shù)內(nèi)容包括行列式、矩陣、線性方程組與向量、矩陣的特征值與特征向量、二次型及Mathematica 軟件的應(yīng)用等。 每章都配有習(xí)題,書后給出了習(xí)題答案。本書在編寫中力求重點(diǎn)突出、由淺入深、 通俗易懂,努力體現(xiàn)教學(xué)的適用性。本書可作為高等院校工科專業(yè)的學(xué)生的教材,也可作為其他非數(shù)學(xué)類本科專業(yè)學(xué)生的教材或教學(xué)參考書。

作者簡(jiǎn)介

  作者GILBERT STRANG為Massachusetts Institute of Technology數(shù)學(xué)系教授。從UCLA博士畢業(yè)后一直在MIT任教.教授的課程有“數(shù)據(jù)分析的矩陣方法”“線性代數(shù)”“計(jì)算機(jī)科學(xué)與工程”等,出版的圖書有Linear Algebra and Learning from Data (NEW)、See math.mit.edu/learningfromdata、Introduction to Linear Algebra - Fifth Edition 、Contact linearalgebrabook@gmail.com、Complete List of Books and Articles、Differential Equations and Linear Algebra。

圖書目錄

Table of Contents
1 Introduction to Vectors 1
1.1 VectorsandLinearCombinations...................... 2

1.2 LengthsandDotProducts.......................... 11

1.3 Matrices ................................... 22

2 Solving Linear Equations 31
2.1 VectorsandLinearEquations........................ 31

2.2 TheIdeaofElimination........................... 46

2.3 EliminationUsingMatrices......................... 58

2.4 RulesforMatrixOperations ........................ 70

2.5 InverseMatrices............................... 83

2.6 Elimination = Factorization: A = LU .................. 97

2.7 TransposesandPermutations ........................ 108

3 Vector Spaces and Subspaces 122
3.1 SpacesofVectors .............................. 122

3.2 The Nullspace of A: Solving Ax = 0and Rx =0 ........... 134

3.3 The Complete Solution to Ax = b ..................... 149

3.4 Independence,BasisandDimension .................... 163

3.5 DimensionsoftheFourSubspaces ..................... 180

4 Orthogonality 193
4.1 OrthogonalityoftheFourSubspaces . . . . . . . . . . . . . . . . . . . . 193
4.2 Projections ................................. 205

4.3 LeastSquaresApproximations ....................... 218

4.4 OrthonormalBasesandGram-Schmidt. . . . . . . . . . . . . . . . . . . 232
5 Determinants 246
5.1 ThePropertiesofDeterminants....................... 246

5.2 PermutationsandCofactors......................... 257

5.3 Cramer’sRule,Inverses,andVolumes . . . . . . . . . . . . . . . . . . . 272
vii

6 Eigenvalues and Eigenvectors 287
6.1 IntroductiontoEigenvalues......................... 287

6.2 DiagonalizingaMatrix ........................... 303

6.3 SystemsofDifferentialEquations ..................... 318

6.4 SymmetricMatrices............................. 337

6.5 PositiveDe.niteMatrices.......................... 349

7 TheSingularValueDecomposition (SVD) 363
7.1 ImageProcessingbyLinearAlgebra .................... 363

7.2 BasesandMatricesintheSVD ....................... 370

7.3 Principal Component Analysis (PCA by the SVD) . . . . . . . . . . . . . 381
7.4 TheGeometryoftheSVD ......................... 391

8 LinearTransformations 400
8.1 TheIdeaofaLinearTransformation .................... 400

8.2 TheMatrixofaLinearTransformation. . . . . . . . . . . . . . . . . . . 410
8.3 TheSearchforaGoodBasis ........................ 420

9 ComplexVectorsand Matrices 429
9.1 ComplexNumbers ............................. 430

9.2 HermitianandUnitaryMatrices ...................... 437

9.3 TheFastFourierTransform......................... 444

10 Applications 451
10.1GraphsandNetworks ............................ 451

10.2MatricesinEngineering........................... 461

10.3 Markov Matrices, Population, and Economics . . . . . . . . . . . . . . . 473
10.4LinearProgramming ............................ 482

10.5 Fourier Series: Linear Algebra for Functions . . . . . . . . . . . . . . . . 489
10.6ComputerGraphics ............................. 495

10.7LinearAlgebraforCryptography...................... 501

11 NumericalLinear Algebra 507
11.1GaussianEliminationinPractice ...................... 507

11.2NormsandConditionNumbers....................... 517

11.3 IterativeMethodsandPreconditioners . . . . . . . . . . . . . . . . . . . 523
12LinearAlgebrain Probability& Statistics 534
12.1Mean,Variance,andProbability ...................... 534

12.2 Covariance Matrices and Joint Probabilities . . . . . . . . . . . . . . . . 545
12.3 Multivariate Gaussian and Weighted Least Squares . . . . . . . . . . . . 554
MatrixFactorizations 562
Index 564
SixGreatTheorems/LinearAlgebrain aNutshell 573

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)