注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)計算機/網(wǎng)絡(luò)軟件與程序設(shè)計Python數(shù)據(jù)分析、挖掘與可視化(慕課版)

Python數(shù)據(jù)分析、挖掘與可視化(慕課版)

Python數(shù)據(jù)分析、挖掘與可視化(慕課版)

定 價:¥49.80

作 者: 董付國 著
出版社: 人民郵電出版社
叢編項:
標(biāo) 簽: 暫缺

購買這本書可以去


ISBN: 9787115523617 出版時間: 2020-01-01 包裝: 平裝
開本: 16開 頁數(shù): 264 字數(shù):  

內(nèi)容簡介

  1.Python零基礎(chǔ),輕松學(xué)會數(shù)據(jù)分析與挖掘2.編碼、分析、挖掘,數(shù)據(jù)分析全流程一次搞定3.微課視頻,掃碼即可觀看,重點難點逐個擊破本書適于統(tǒng)計學(xué)、數(shù)學(xué)、經(jīng)濟學(xué)、金融學(xué)、管理學(xué)以及相關(guān)理工科專業(yè)的本科生、研究生使用,也能夠提高從事數(shù)據(jù)咨詢、研究或分析等人士的專業(yè)水平和技能。

作者簡介

  本書適于統(tǒng)計學(xué)、數(shù)學(xué)、經(jīng)濟學(xué)、金融學(xué)、管理學(xué)以及相關(guān)理工科專業(yè)的本科生、研究生使用,也能夠提高從事數(shù)據(jù)咨詢、研究或分析等人士的專業(yè)水平和技能。

圖書目錄

第1章 Python開發(fā)環(huán)境的搭建與編碼規(guī)范 1
1.1 Python開發(fā)環(huán)境的搭建與使用 1
1.1.1 IDLE 2
1.1.2 Anaconda3 3
1.1.3 安裝擴展庫 4
1.2 Python編碼規(guī)范 5
1.3 標(biāo)準(zhǔn)庫、擴展庫對象的
導(dǎo)入與使用 7
1.3.1 import模塊名[ as 別名] 7
1.3.2 from模塊名import
對象名[ as 別名] 7
1.3.3 from模塊名import * 8
本章知識要點 8
本章習(xí)題 9
第2章 數(shù)據(jù)類型、運算符與內(nèi)置函數(shù) 10
2.1 常用內(nèi)置數(shù)據(jù)類型 10
2.1.1 整數(shù)、浮點數(shù)、復(fù)數(shù) 11
2.1.2 列表、元組、字典、集合 12
2.1.3 字符串 13
2.2 運算符與表達式 14
2.2.1 算術(shù)運算符 15
2.2.2 關(guān)系運算符 17
2.2.3 成員測試運算符 18
2.2.4 集合運算符 18
2.2.5 邏輯運算符 18
2.3 常用內(nèi)置函數(shù) 19
2.3.1 類型轉(zhuǎn)換 21
2.3.2 最大值、最小值 22
2.3.3 元素數(shù)量、求和 23
2.3.4 排序、逆序 24
2.3.5 基本輸入/輸出 25
2.3.6 range() 26
2.3.7 zip() 26
2.3.8 map()、reduce()、filter() 27
2.4 綜合應(yīng)用與例題解析 28
本章知識要點 29
本章習(xí)題 30
第3章 列表、元組、字典、集合與
字符串 31
3.1 列表與列表推導(dǎo)式 31
3.1.1 創(chuàng)建列表 31
3.1.2 使用下標(biāo)訪問列表中的
元素 32
3.1.3 列表常用方法 33
3.1.4 列表推導(dǎo)式 34
3.1.5 切片操作 35
3.2 元組與生成器表達式 36
3.2.1 元組與列表的區(qū)別 36
3.2.2 生成器表達式 36
3.2.3 序列解包 37
3.3 字典 37
3.3.1 字典元素的訪問 38
3.3.2 字典元素的修改、
添加與刪除 39
3.4 集合 39
3.4.1 集合概述 39
3.4.2 集合常用方法 40
3.5 字符串常用方法 40
3.5.1 encode() 41
3.5.2 format() 41
3.5.3 index()、rindex()、count() 42
3.5.4 replace()、maketrans()、
translate() 42
3.5.5 ljust()、rjust()、center() 43
3.5.6 split()、rsplit()、join() 43
3.5.7 lower()、upper()、capitalize()、
title()、swapcase() 44
3.5.8 startswith()、endswith() 44
3.5.9 strip()、rstrip()、lstrip() 44
3.6 綜合應(yīng)用與例題解析 45
本章知識要點 47
本章習(xí)題 47
第4章 選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、
函數(shù)定義與使用 49
4.1 選擇結(jié)構(gòu) 49
4.1.1 條件表達式 49
4.1.2 單分支選擇結(jié)構(gòu) 50
4.1.3 雙分支選擇結(jié)構(gòu) 50
4.1.4 嵌套的分支結(jié)構(gòu) 50
4.2 循環(huán)結(jié)構(gòu) 51
4.2.1 for循環(huán) 51
4.2.2 while循環(huán) 51
4.2.3 break與continue語句 52
4.3 函數(shù)定義與使用 52
4.3.1 函數(shù)定義基本語法 52
4.3.2 lambda表達式 52
4.3.3 遞歸函數(shù) 53
4.3.4 生成器函數(shù) 53
4.3.5 位置參數(shù)、默認值參數(shù)、關(guān)鍵
參數(shù)、可變長度參數(shù) 54
4.3.6 變量作用域 55
4.4 綜合應(yīng)用與例題解析 56
本章知識要點 57
本章習(xí)題 58
第5章 文件操作 59
5.1 文件操作基礎(chǔ) 59
5.1.1 內(nèi)置函數(shù)open() 59
5.1.2 文件對象常用方法 60
5.1.3 上下文管理語句with 61
5.2 JSON文件操作 61
5.3 CSV文件操作 62
5.4 Word、Excel、PowerPoint
文件操作實戰(zhàn) 63
本章知識要點 65
本章習(xí)題 65
第6章 numpy數(shù)組與矩陣運算 67
6.1 numpy數(shù)組及其運算 67
6.1.1 創(chuàng)建數(shù)組 67
6.1.2 測試兩個數(shù)組的對應(yīng)元素
是否足夠接近 69
6.1.3 修改數(shù)組中的元素值 70
6.1.4 數(shù)組與標(biāo)量的運算 71
6.1.5 數(shù)組與數(shù)組的運算 71
6.1.6 數(shù)組排序 72
6.1.7 數(shù)組的內(nèi)積運算 73
6.1.8 訪問數(shù)組中的元素 73
6.1.9 數(shù)組對函數(shù)運算的支持 74
6.1.10 改變數(shù)組形狀 75
6.1.11 數(shù)組布爾運算 76
6.1.12 分段函數(shù) 77
6.1.13 數(shù)組堆疊與合并 78
6.2 矩陣生成與常用操作 79
6.2.1 矩陣生成 79
6.2.2 矩陣轉(zhuǎn)置 79
6.2.3 查看矩陣特征 80
6.2.4 矩陣乘法 81
6.2.5 計算相關(guān)系數(shù)矩陣 81
6.2.6 計算方差、協(xié)方差、標(biāo)準(zhǔn)差 82
6.3 計算特征值與特征向量 82
6.4 計算逆矩陣 83
6.5 求解線性方程組 84
6.6 計算向量和矩陣的范數(shù) 85
6.7 奇異值分解 86
6.8 函數(shù)向量化 87
本章知識要點 88
本章習(xí)題 88
第7章 pandas數(shù)據(jù)分析實戰(zhàn) 91
7.1 pandas常用數(shù)據(jù)類型 91
7.1.1 一維數(shù)組與常用操作 92
7.1.2 時間序列與常用操作 96
7.1.3 二維數(shù)組DataFrame 99
7.2 DataFrame數(shù)據(jù)處理與分析實戰(zhàn) 101
7.2.1 讀取Excel文件中的數(shù)據(jù) 101
7.2.2 篩選符合特定條件的數(shù)據(jù) 103
7.2.3 查看數(shù)據(jù)特征和統(tǒng)計信息 106
7.2.4 按不同標(biāo)準(zhǔn)對數(shù)據(jù)排序 108
7.2.5 使用分組與聚合對員工
業(yè)績進行匯總 110
7.2.6 處理超市交易數(shù)據(jù)中的
異常值 114
7.2.7 處理超市交易數(shù)據(jù)中的
缺失值 115
7.2.8 處理超市交易數(shù)據(jù)中的
重復(fù)值 117
7.2.9 使用數(shù)據(jù)差分查看員工
業(yè)績波動情況 118
7.2.10 使用透視表與交叉表查看
業(yè)績匯總數(shù)據(jù) 119
7.2.11 使用重采樣技術(shù)按時間段
查看員工業(yè)績 123
7.2.12 多索引相關(guān)技術(shù)與操作 125
7.2.13 使用標(biāo)準(zhǔn)差與協(xié)方差分析
員工業(yè)績 127
7.2.14 使用pandas的屬性接口實現(xiàn)
高級功能 130
7.2.15 繪制各員工在不同柜臺
業(yè)績平均值的柱狀圖 132
7.2.16 查看DataFrame的內(nèi)存
占用情況 134
7.2.17 數(shù)據(jù)拆分與合并 135
本章知識要點 139
本章習(xí)題 140
第8章 sklearn機器學(xué)習(xí)實戰(zhàn) 141
8.1 機器學(xué)習(xí)基本概念 141
8.2 機器學(xué)習(xí)庫sklearn簡介 147
8.2.1 擴展庫sklearn常用
模塊與對象 147
8.2.2 選擇合適的模型和算法 149
8.3 線性回歸算法的原理與應(yīng)用 149
8.3.1 線性回歸模型的原理 149
8.3.2 sklearn中線性回歸模型的
簡單應(yīng)用 150
8.3.3 嶺回歸的基本原理與
sklearn實現(xiàn) 151
8.3.4 套索回歸Lasso的基本
原理與sklearn實現(xiàn) 152
8.3.5 彈性網(wǎng)絡(luò)ElasticNet的基本
原理與sklearn實現(xiàn) 153
8.3.6 使用線性回歸模型預(yù)測
兒童身高 153
8.4 邏輯回歸算法的原理與應(yīng)用 155
8.4.1 邏輯回歸算法的原理與
sklearn實現(xiàn) 155
8.4.2 使用邏輯回歸算法預(yù)測
考試能否及格 157
8.5 樸素貝葉斯算法的原理與應(yīng)用 158
8.5.1 基本概念 158
8.5.2 樸素貝葉斯算法分類的原理與
sklearn實現(xiàn) 160
8.5.3 使用樸素貝葉斯算法對中文
郵件進行分類 161
8.6 決策樹與隨機森林算法的應(yīng)用 163
8.6.1 基本概念 163
8.6.2 決策樹算法原理與
sklearn實現(xiàn) 163
8.6.3 隨機森林算法原理與
sklearn實現(xiàn) 166
8.6.4 使用決策樹算法判斷學(xué)員的
Python水平 168
8.7 支持向量機算法原理與應(yīng)用 170
8.7.1 支持向量機算法基本原理與
sklearn實現(xiàn) 170
8.7.2 使用支持向量機對手寫數(shù)字
圖像進行分類 172
8.8 KNN算法原理與應(yīng)用 175
8.8.1 KNN算法的基本原理與
sklearn實現(xiàn) 175
8.8.2 使用KNN算法判斷交通
工具類型 177
8.9 KMeans聚類算法原理與應(yīng)用 178
8.9.1 KMeans聚類算法的基本原理
與sklearn實現(xiàn) 178
8.9.2 使用KMeans算法壓縮
圖像顏色 181
8.10 分層聚類算法原理與應(yīng)用 182
8.11 DBSCAN算法原理與應(yīng)用 184
8.12 使用協(xié)同過濾算法進行
電影推薦 187
8.13 關(guān)聯(lián)規(guī)則分析原理與應(yīng)用 189
8.13.1 關(guān)聯(lián)規(guī)則分析原理與
基本概念 189
8.13.2 使用關(guān)聯(lián)規(guī)則分析
演員關(guān)系 190
8.14 數(shù)據(jù)降維 192
8.15 交叉驗證與網(wǎng)格搜索 195
8.15.1 使用交叉驗證評估模型
泛化能力 195
8.15.2 使用網(wǎng)格搜索確定模型
最佳參數(shù) 197
本章知識要點 199
本章習(xí)題 200
第9章 matplotlib數(shù)據(jù)可視化實戰(zhàn) 201
9.1 數(shù)據(jù)可視化庫matplotlib基礎(chǔ) 201
9.2 繪制折線圖實戰(zhàn) 202
9.3 繪制散點圖實戰(zhàn) 205
9.4 繪制柱狀圖實戰(zhàn) 208
9.5 繪制餅狀圖實戰(zhàn) 212
9.6 繪制雷達圖實戰(zhàn) 215
9.7 繪制三維圖形實戰(zhàn) 218
9.8 繪圖區(qū)域切分實戰(zhàn) 224
9.9 設(shè)置圖例樣式實戰(zhàn) 225
9.10 事件響應(yīng)與處理實戰(zhàn) 229
9.11 填充圖形 244
9.12 保存繪圖結(jié)果 246
本章知識要點 247
本章習(xí)題 247
部分習(xí)題答案 248
第1章 Python開發(fā)環(huán)境搭建與
編碼規(guī)范 248
第2章 數(shù)據(jù)類型、運算符與
內(nèi)置函數(shù) 248
第3章 列表、元組、字典、集合與
字符串 249
第4章 選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、函數(shù)
定義與使用 251
第5章 文件操作 253
第6章 numpy數(shù)組與矩陣運算 254
第7章 pandas數(shù)據(jù)分析實戰(zhàn) 255
附錄A 運算符、內(nèi)置函數(shù)對常用內(nèi)置
對象的支持情況表 257
附錄B Python關(guān)鍵字清單 258
附錄C 常用標(biāo)準(zhǔn)庫對象速查表 260
附錄D 常用Python擴展庫清單 263
參考文獻 264

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號