注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)計(jì)算機(jī)/網(wǎng)絡(luò)軟件工程及軟件方法學(xué)高性能Spark(影印版)

高性能Spark(影印版)

高性能Spark(影印版)

定 價(jià):¥88.00

作 者: Holden Karau,Rachel Warren
出版社: 東南大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 計(jì)算機(jī)?網(wǎng)絡(luò) 軟件工程及軟件方法學(xué)

ISBN: 9787564175184 出版時(shí)間: 2018-02-01 包裝:
開本: 頁數(shù): 字?jǐn)?shù):  

內(nèi)容簡介

  本書描述了減少數(shù)據(jù)基礎(chǔ)設(shè)施成本和開發(fā)時(shí)間的技巧,適用于軟件工程師、數(shù)據(jù)工程師、開發(fā)者和系統(tǒng)管理員。你不僅可以從中獲得關(guān)于Spark的全面理解,也將學(xué)會(huì)如何讓它運(yùn)轉(zhuǎn)自如。 在本書中你將發(fā)現(xiàn): * Spark SQL的新接口如何在SQL的RDD數(shù)據(jù)結(jié)構(gòu)上改善性能 * Core Spark和Spark SQL之間的數(shù)據(jù)拼接選擇 * 充分發(fā)揮標(biāo)準(zhǔn)RDD轉(zhuǎn)換功能的技巧 * 如何處理Spark的鍵/值對(duì)范式的相關(guān)性能問題 * 編寫高性能Spark代碼,不使用Scala或JVM * 如何在應(yīng)用建議的改進(jìn)措施時(shí)測(cè)試功能和性能 * 使用Spark MLlib和Spark ML機(jī)器學(xué)習(xí)庫 * Spark的流組件和外部社區(qū)軟件包

作者簡介

  Holden Karau是一位跨性別加拿大人,在IBM Spark技術(shù)中心擔(dān)任軟件開發(fā)工程師。她是Spark代碼貢獻(xiàn)者,并且經(jīng)常提交貢獻(xiàn)代碼,特別是PySpark和機(jī)器學(xué)習(xí)部分。Holden在多個(gè)國際活動(dòng)中演講Spark相關(guān)話題。 Rachel Warren是Alpine Data的軟件工程師和數(shù)據(jù)科學(xué)家。在日常工作中,她使用Spark來處理真實(shí)世界的數(shù)據(jù)和機(jī)器學(xué)習(xí)問題。她也曾在工業(yè)界和學(xué)術(shù)界擔(dān)任分析師和導(dǎo)師。

圖書目錄

Preface
1.Introductioto High Performance Spark
What Is Spark and Why Performance Matters
What You CaExpect to Get from This Book
Spark Versions
Why Scala
To Be a Spark Expert You Have to Leara Little Scala Anyway
The Spark Scala API Is Easier to Use Thathe lava API
Scala Is More Performant ThaPython
Why Not Scala
Learning Scala
Conclusion
2.How Spark Works
How Spark Fits into the Big Data Ecosystem
Spark Components
Spark Model of Parallel Computing: RDDs
Lazy Evaluation
In-Memory Persistence and Memory Management
Immutability and the RDD Interface
Types of RDDs
Functions oRDDs: Transformations Versus Actions
Wide Versus Narrow Dependencies
Spark Job Scheduling
Resource AllocatioAcross Applications
The Spark Application
The Anatomy of a Spark lob
The DAG
Jobs
Stages
Tasks
Conclusion
3.DataFrames, Datasets, and Spark SQL
Getting Started with the SparkSessio(or HiveContext or SQLContext)
Spark SQL Dependencies
Managing Spark Dependencies
Avoiding Hive JARs
Basics of Schemas
DataFrame API
Transformations
Multi-DataFrame Transformations
PlaiOld SQL Queries and Interacting with Hive Data
Data RepresentatioiDataFrames and Datasets
Tungsten
Data Loading and Saving Functions
DataFrameWriter and DataFrameReader
Formats
Save Modes
Partitions (Discovery and Writing)
Datasets
Interoperability with RDDs, DataFrames, and Local Collections
Compile-Time Strong Typing
Easier Functional (RDD 'like') Transformations
Relational Transformations
Multi-Dataset Relational Transformations
Grouped Operations oDatasets
Extending with User-Defined Functions and Aggregate Functions (UDFs,UDAFs)
Query Optimizer
Logical and Physical Plans
Code Generation
Large Query Plans and Iterative Algorithms
Debugging Spark SQL Queries
BC/ODBC Server
Conclusion
4.Joins (SQL and Core)
Core Spark Joins
Choosing a JoiType
Choosing aExecutioPlan
Spark SQL Joins
DataFrame Joins
Dataset Joins
Conclusion
5.Effective Transformations
Narrow Versus Wide Transformations
Implications for Performance
Implications for Fault Tolerance
The Special Case of coalesce
What Type of RDD Does Your TransformatioReturn
Minimizing Object Creation
Reusing Existing Objects
Using Smaller Data Structures
Iterator-to-Iterator Transformations with mapPartitions
What Is aIterator-to-Iterator Transformation
Space and Time Advantages
AExample
Set Operations
Reducing Setup Overhead
Shared Variables
Broadcast Variables
Accumulators
Reusing RDDs
Cases for Reuse
Deciding if Repute Is Inexpensive Enough
Types of Reuse: Cache, Persist, Checkpoint, Shuffle Files
Alluxio (nee Tachyon)
LRU Caching
Noisy Cluster Considerations
Interactiowith Accumulators
Conclusion
6.Working with Key/Value Data
The Goldilocks Example
Goldilocks Versio0: Iterative Solution
How to Use PairRDDFunctions and OrderedRDDFunctions
Actions oKey/Value Pairs
What's So Dangerous About the groupByKey Function
Goldilocks Versio1: groupByKey Solution
Choosing aAggregatioOperation
Dictionary of AggregatioOperations with Performance Considerations
Multiple RDD Operations
Co-Grouping
Partitioners and Key/Value Data
Using the Spark Partitioner Object
Hash Partitioning
Range Partitioning
Custom Partitioning
Preserving Partitioning InformatioAcross Transformations
Leveraging Co-Located and Co-Partitioned RDDs
Dictionary of Mapping and Partitioning Functions PairRDDFunctions
Dictionary of OrderedRDDOperations
Sorting by Two Keys with SortByKey
Secondary Sort and repartitionAndSortWithinPartitions
Leveraging repartitionAndSortWithinPartitions for a Group by Key and Sort Values Function
How Not to Sort by Two Orderings
Goldilocks Versio2: Secondary Sort
A Different Approach to Goldilocks
Goldilocks Versio3: Sort oCell Values
Straggler Detectioand Unbalanced Data
Back to Goldilocks (Again)
Goldilocks Versio4: Reduce to Distinct oEach Partition
Conclusion
7.Going Beyond Scala
Beyond Scala withithe JVM
Beyond Scala, and Beyond the JVM
How PySpark Works
How SparkR Works
Spark.jl (Julia Spark)
How Eclair JS Works
Spark othe CommoLanguage Runtime (CLR)——C# and Friends
Calling Other Languages from Spark
Using Pipe and Friends
JNI
Java Native Access (JNA)
Underneath Everything Is FORTRAN
Getting to the GPU
The Future
Conclusion
8.Testing and Validation
Unit Testing
General Spark Unit Testing
Mocking RDDs
Getting Test Data
Generating Large Datasets
Sampling
Property Checking with ScalaCheck
Computing RDD Difference
IntegratioTesting
Choosing Your IntegratioTesting Environment
Verifying Performance
Spark Counters for Verifying Performance
Projects for Verifying Performance
Job Validation
Conclusion
9.Spark MLlib and ML
Choosing BetweeSpark MLlib and Spark ML
Working with MLlib
Getting Started with MLlib (Organizatioand Imports)
MLlib Feature Encoding and Data Preparation
Feature Scaling and Selection
MLlib Model Training
Predicting
Serving and Persistence
Model Evaluation
Working with Spark ML
Spark ML Organizatioand Imports
Pipeline Stages
ExplaiParams
Data Encoding
Data Cleaning
Spark ML Models
Putting It All Together ia Pipeline
Training a Pipeline
Accessing Individual Stages
Data Persistence and Spark ML
Extending Spark ML Pipelines with Your OwAlgorithms
Model and Pipeline Persistence and Serving with Spark ML
General Serving Considerations
Conclusion
10.Spark Components and Packages
Stream Processing with Spark
Sources and Sinks
Batch Intervals
Data Checkpoint Intervals
Considerations for DStreams
Considerations for Structured Streaming
High Availability Mode (or Handling Driver Failure or Checkpointing)
GraphX
Using Community Packages and Libraries
Creating a Spark Package
Conclusion
A.Tuning, Debugging, and Other Things Developers Like to Pretend Don't Exist
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)