注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)計算機(jī)/網(wǎng)絡(luò)網(wǎng)絡(luò)與數(shù)據(jù)通信網(wǎng)絡(luò)服務(wù)OpenCV機(jī)器學(xué)習(xí)(影印版)

OpenCV機(jī)器學(xué)習(xí)(影印版)

OpenCV機(jī)器學(xué)習(xí)(影印版)

定 價:¥96.00

作 者: Michael,Beyeler
出版社: 東南大學(xué)出版社
叢編項:
標(biāo) 簽: 暫缺

購買這本書可以去


ISBN: 9787564183240 出版時間: 2019-05-01 包裝: 平裝
開本: 16開 頁數(shù): 357 字?jǐn)?shù):  

內(nèi)容簡介

  《OpenCV機(jī)器學(xué)習(xí)(影印版)》首先介紹了統(tǒng)計學(xué)習(xí)的基本概念,例如分類和回歸。介紹完所有的基礎(chǔ)知識之后,就開始探究如決策樹、支持向量機(jī)、貝葉斯網(wǎng)絡(luò)等算法,學(xué)習(xí)如何將它們與其他OpenCV功能綜合運用。你的機(jī)器學(xué)習(xí)技能會隨著書中內(nèi)容的進(jìn)度一同提高,直到準(zhǔn)備好學(xué)習(xí)當(dāng)前熱門的主題:深度學(xué)習(xí)。在《OpenCV機(jī)器學(xué)習(xí)(影印版)》的結(jié)尾,你可以根據(jù)現(xiàn)有的源代碼構(gòu)建或是從頭開發(fā)自己的算法來解決自己碰到的機(jī)器學(xué)習(xí)問題!

作者簡介

  邁克爾·貝耶勒是華盛頓大學(xué)神經(jīng)工程和數(shù)據(jù)科學(xué)專業(yè)的博士后,主攻仿生視覺計算模型,用以為盲人植入人工視網(wǎng)膜(仿生眼睛),改善盲人的視覺體驗。他的工作屬于神經(jīng)科學(xué)、計算機(jī)工程、計算機(jī)視覺和機(jī)器學(xué)習(xí)的交叉領(lǐng)域。他也是2015年P(guān)ackt出版的《OpenCV with Python Blueprints》一書的作者,該書是構(gòu)建高級計算機(jī)視覺項目的實用指南。同時他也是多個開源項目的積極貢獻(xiàn)者,具有Python、C/C++、CUDA、MATLAB和Android的專業(yè)編程經(jīng)驗。他還擁有加利福尼亞大學(xué)歐文分校計算機(jī)科學(xué)專業(yè)的博士學(xué)位、瑞士蘇黎世聯(lián)邦理工學(xué)院生物醫(yī)學(xué)專業(yè)的碩士學(xué)位和電子工程專業(yè)的學(xué)士學(xué)位。當(dāng)他不“呆頭呆腦”地研究大腦時,他會攀登雪山、參加現(xiàn)場音樂會或者彈鋼琴。

圖書目錄

Preface
Chapter 1:A Taste of Machine Learning
Getting started with machine learning
Problems that machine learning can solve
Getting started with Python
Getting started with OpenCV
Installation
Getting the latest code for this book
Getting to grips with Python's Anaconda distribution
Installing OpenCV in a conda environment
Verifying the installation
Getting a glimpse of OpenCV's ML module
Summary
Chapter 2: Working with Data in OpenCV and Python
Understanding the machine learning workflow
Dealing with data using OpenCV and Python
Starting a new IPython or Jupyter session
Dealing with data using Python's NumPy package
Importing NumPy
Understanding NumPy arrays
Accessing single array elements by indexing
Creating multidimensional arrays
Loading external datasets in Python
Visualizing the data using Matplotlib
Importing Matplotlib
Producing a simple plot
Visualizing data from an external dataset
Dealing with data using OpenCV's TrainData container in C++
Summary
Chapter 3: First Steps in Supervised Learning
Understanding supervised learning
Having a look at supervised learning in OpenCV
Measuring model performance with scoring functions
Scoring classifiers using accuracy, precision, and recall
Scoring regressors using mean squared error, explained variance, and R squared
Using classification models to predict class labels
Understanding the k-NN algorithm
Implementing k-NN in OpenCV
Generating the training data
Training the classifier
Predicting the label of a new data point
Using regression models to predict continuous outcomes
Understanding linear regression
Using linear regression to predict Boston housing prices
Loading the dataset
Training the model
Testing the model
Applying Lasso and ridge regression
Classifying iris species using logistic regression
Understanding logistic regression
Loading the training data
Making it a binary classification problem
Inspecting the data
Splitting the data into training and test sets
Training the classifier
Testing the classifier
Summary
Chapter 4: Representing Data and Engineering Features
Understanding feature engineering
Preprocessing data
Standardizing features
Normalizing features
Scaling features to a range
Binarizing features
Handling the missing data
Understanding dimensionality reduction
Implementing Principal Component Analysis (PCA) in OpenCV
Implementing Independent Component Analysis (ICA)
Implementing Non-negative Matrix Factorization (NMF)
Representing categorical variables
Representing text features
Representing images
Using color spaces
Encoding images in RGB space
Encoding images in HSV and HLS space
Detecting corners in images
Chapter 5: Using Decision Trees to Make a Medical Diagnosis
Chapter 6: Detecting Pedestrians with Support Vector Machines
Chapter 7: Implementing a Spam Filter with Bayesian Learning
Chapter 8: Discovering Hidden Structures with Unsupervised Learning
Chapter 9: Using Deed Learning to Classifv Handwritten Diqits
Chapter 10: Combining Different Algorithms into an Ensemble
Chapter 11:Selecting the Right Model with Hyperparameter Tuning
Chapter 12: Wrapping Up

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號