“量子群”的概念是 V.G. Drinfel'd 和 M. Jimbo 在各自研究由二維可解格模型得到的量子Yang-Baxter方程時獨立引入的。量子群是Hopf代數(shù)的某些族,這些族是Kac-Moody代數(shù)的泛包絡(luò)代數(shù)的變形。在過去的三十年中,它們已成為數(shù)學(xué)和數(shù)學(xué)物理的許多分支背后的基本代數(shù)結(jié)構(gòu),例如統(tǒng)計力學(xué)中的可解格模型,鏈環(huán)和結(jié)點的拓?fù)洳蛔兝碚?,Kac-Moody代數(shù)的表示論,代數(shù)結(jié)構(gòu)的表示論,拓?fù)淞孔訄稣?,幾何表示論和C*-代數(shù)。特別地,由 M. Kashiwara 和 G. Lusztig 獨立發(fā)展的“晶體基”或“典范基”理論為研究量子群的表示提供了一種強大的組合和幾何工具?!读孔尤汉途w基引論(英文版)/美國數(shù)學(xué)會經(jīng)典影印系列》的目的是提供量子群和晶體基理論的基本介紹,重點放在理論的組合方面?!读孔尤汉途w基引論(英文版)/美國數(shù)學(xué)會經(jīng)典影印系列》適合對非結(jié)合環(huán)和代數(shù)感興趣的研究生閱讀,也可供相關(guān)研究人員參考。
作者簡介
暫缺《量子群和晶體基引論(英文版 精)》作者簡介
圖書目錄
Introduction Chapter 1. Lie Algebras and Hopf Algebras 1.1. Lie algebras 1.2. Representations of Lie algebras 1.3. The Lie algebra 8[(2, F) 1.4. The special linear Lie algebra [(n, F) 1.5. Hopf algebras Exercises Chapter 2. Kac-Moody Algebras 2.1. Kac-Moody algebras 2.2. Classification of generalized Cartan matrices 2.3. Representation theory of Kac-Moody algebras 2.4. The category Oint Exercises Chapter 3. Quantum Groups 3.1. Quantum groups 3.2. Representation theory of quantum groups 3.3. Al-forms 3.4. Classical limit 3.5. Complete reducibility of the category oiqt Exercises Chapter 4. Crystal Bases 4.1. Kashiwara operators 4.2. Crystal bases and crystal graphs 4.3. Crystal bases for Uq(12)-modules 4.4. Tensor product rule 4.5. Crystals Exercises Chapter 5. Existence and Uniqueness of Crystal Bases 5.1. Existence of crystal bases 5.2. Uniqueness of crystal bases 5.3. Kashiwara's grand-loop argument Exercises Chapter 6. Global Bases 6.1. Balanced triple 6.2. Global basis for V(A) 6.3. Polarization on Uq (g) 6.4. Triviality of vector bundles over p1 6.5. Existence of global bases Exercises Chapter 7. Young Tableaux and Crystals 7.1. The quantum group Uq(ln) 7.2. The category O> 7.3. Tableaux and crystals 7.4. Crystal graphs for Uq(gIn)-modules Exercises Chapter 8. Crystal Graphs for Classical Lie Algebras 8.1. Example: Uq(B3)-crystals 8.2. Realization of Uq(An-1)-crystals 8.3. Realization of Uq(Cn)-crystals