《Chemical Process Simulation》將研究生學(xué)術(shù)思維訓(xùn)練與過程模擬實踐相結(jié)合,旨在提高研究生的科學(xué)認(rèn)知與工程實踐能力。本書利用GROMACS, Materials Studio, Aspen Plus, MATLAB等軟件,從分子動力學(xué)、相平衡、穩(wěn)態(tài)模擬及動態(tài)控制等方面,重點闡述化工過程模擬的綠色、節(jié)能與精密控制技術(shù)。本書共11章內(nèi)容,第1章主要介紹汽液平衡和液液平衡實驗數(shù)據(jù)的回歸,第2章主要介紹離子液體相行為及其熱力學(xué)性質(zhì)的預(yù)測,離子液體在分離混合物方面的應(yīng)用,第3~5章主要介紹過程強(qiáng)化與集成方面的實例,主要包括膜分離、熱集成、熱耦合、熱泵隔壁塔精餾技術(shù),第6~11章主要介紹了萃取精餾、變壓精餾、間歇精餾及反應(yīng)精餾等精餾過程的動態(tài)控制案例。 《Chemical Process Simulation》可作為高等院校化工等相關(guān)專業(yè)研究生的教學(xué)參考書,也可供從事化工過程開發(fā)與設(shè)計的工程技術(shù)人員參考。
作者簡介
暫缺《化工過程模擬:綠色、節(jié)能與精密控制》作者簡介
圖書目錄
Chapter 1 Simulation of Vapor-liquid and Liquid-liquid Equilibrium for Binary/ Ternary Systems 1.1 Introduction / 1 1.2 Data Regression of Binary System / 1 1.3 Data Regression of Ternary System by NRTL / 8 1.4 Data Regression of Ternary System by UNIQUAC / 11 References / 13
Chapter 2 Application of Green Solvents in Absorption and Extraction 2.1 Introduction / 14 2.2 Molecular Dynamics Simulation / 14 2.2.1 Generating GROMACS Supported Files / 15 2.2.2 Defining the Unit Box and Filling Solvent / 20 2.2.3 Energy Minimization / 22 2.2.4 NVT Balance / 24 2.2.5 NPT Balance / 26 2.2.6 Finishing MD / 27 2.2.7 Analysis / 28 2.3 Simulation of Extractive Distillation Using the Ionic Liquid / 30 2.3.1 Analysis of Correlation Model / 30 2.3.2 Definition of the Ionic Liquid in Aspen Plus / 32 2.4 Simulation of CO2 Absorption Using the Ionic Liquid / 37 2.4.1 Calculation of σ-profile Value / 38 2.4.2 Definition of the Ionic Liquid in Aspen Plus / 43 2.4.3 Simulation of CO2 Capture Using the Ionic Liquid / 44 2.5 Simulation of Extractive Distillation Using Deep Eutectic Solvents / 49 2.5.1 Definition of Deep Eutectic Solvents in Aspen Plus / 50 2.5.2 Process Simulation / 52 References / 54
Chapter 3 Membrane Separation Process 3.1 Introduction / 56 3.2 Principle of Membrane Separation / 56 3.3 Separation of DMSO-water Using Membrane / 57 References / 64
Chapter 4 Heat-integration and Thermally Coupled Distillation 4.1 Introduction / 65 4.2 Steady-state Simulation of THF-methanol System with Heat- integration / 66 4.2.1 Simulation without Heat-integration / 66 4.2.2 Simulation with Partial Heat-integration / 70 4.2.3 Simulation with Full Heat-integration / 73 4.3 Thermally Coupled Distillation Process / 76 4.4 Energy-saving Thermally Coupled Ternary Extractive Distillation Process / 78 References / 86
Chapter 5 Heat Pump Distillation for Close-boiling Mixture 5.1 Introduction / 88 5.2 Main Forms of Heat Pump Distillation / 88 5.3 Heat Pump Distillation Process of Binary System Close-boiling Mixture / 90 References / 99
Chapter 6 Energy-saving Side-stream Extractive Distillation Process 6.1 Introduction / 100 6.2 Steady-state Design of Side-stream Extractive Distillation / 100 6.3 Dynamic Control of Side-stream Extractive Distillation / 101 6.3.1 Control Structure with Side-stream Composition/Temperature Cascade Connection / 105 6.3.2 Control Structure with S/F and Composition Controller Connection / 105 6.3.3 Improved Dynamic Control Structure / 107 References / 112
Chapter 7 Pressure-swing Distillation for Minimum-boiling Azeotropes 7.1 Introduction / 113 7.2 Converting from Steady-state to Dynamic Simulation / 113 7.3 Control Structures of the Process without Heat-integration / 116 7.3.1 Basic Control Structure / 116 7.3.2 QR/F1 Control Structure / 127 7.3.3 Control Structures of the Process with FullHeat-integration / 128 References / 130
Chapter 8 Ternary Extractive Distillation System Using Mixed Entrainer 8.1 Introduction / 132 8.2 Converting from Steady-state to Dynamic Simulation / 132 8.3 Dynamic Control of Ternary Extractive Distillation Process Using Single Solvent / 135 8.3.1 Basic Control Structure / 135 8.3.2 Dual Temperature Control Structure / 140 8.3.3 Composition with Q R/F Control Structure / 142 8.4 Dynamic Control of Ternary Extractive Distillation Process Using Mixed Entrainer / 145 8.4.1 Basic Control Structure / 145 8.4.2 Composition with Q R/F Control Structure / 146 8.5 Comparisons of the Dynamic Performances of Two Processes / 148 References / 152
Chapter 9 Hybrid Process Including Extraction and Distillation 9.1 Introduction / 153 9.2 Solvent Selection / 153 9.3 Simulation of the Extraction Combined with Distillation Process / 155 9.3.1 Extraction Combined with Heterogeneous Azeotropic Distillation Process (LEHAD) / 155 9.3.2 Extraction Combined with Extractive Distillation Process (LEED) / 160 9.4 Dynamic Simulation of Hybrid Extraction-distillation / 164 9.4.1 Selection of Temperature-sensitive Trays / 164 9.4.2 Dynamic Control of the LEHAD Process / 167 9.4.3 Dynamic Control of the LEED Process / 174 9.5 Energy-saving Hybrid Process with Mixed Solvent / 181 9.6 Dynamics of Hybrid Process with Mixed Solvent / 185 9.6.1 Selection of Temperature-sensitive Trays / 185 9.6.2 Control Structure with Fixed Reflux Ratio / 187 References / 190
Chapter 10 Batch Distillation Integrated with Quasi-continuous Process 10.1 Introduction / 191 10.2 Feasibility of Pressure-swing Batch Distillation Based on the Ternary Residue Curve Maps / 191 10.3 Double Column Batch Stripper Process / 193 10.3.1 Design of Double Column Batch Stripper Process / 193 10.3.2 Control of Double Column Batch Stripper Process / 196 10.4 Triple Column Process / 201 10.4.1 Design of Triple Column Process / 201 10.4.2 Control of Triple Column Process / 202 References / 206
Chapter 11 Simulation of Chemical Reaction Process Based on Reaction Kinetics 11.1 Introduction / 207 11.2 Continuously Stirred Tank Reactor / 208 11.3 Simulation of Cyclohexanone Ammoximation Process / 209 11.3.1 Steady-state Simulation of Cyclohexanone Ammoximation Process / 209 11.3.2 Dynamic Simulation of Cyclohexanone Ammoximation Process / 209 References / 225