定 價(jià):¥119.00
作 者: | 朱飛 |
出版社: | 清華大學(xué)出版社 |
叢編項(xiàng): | 清華大學(xué)優(yōu)秀博士學(xué)位論文叢書(shū) |
標(biāo) 簽: | 暫缺 |
ISBN: | 9787302520955 | 出版時(shí)間: | 2019-06-01 | 包裝: | 平裝 |
開(kāi)本: | 16 | 頁(yè)數(shù): | 209 | 字?jǐn)?shù): |
目錄
第1章緒論
1.1工程背景與研究意義
1.2實(shí)時(shí)耦聯(lián)動(dòng)力試驗(yàn)技術(shù)
1.2.1傳統(tǒng)動(dòng)力試驗(yàn)方法
1.2.2實(shí)時(shí)耦聯(lián)動(dòng)力試驗(yàn)
1.3實(shí)時(shí)耦聯(lián)動(dòng)力試驗(yàn)研究進(jìn)展
1.3.1試驗(yàn)系統(tǒng)的發(fā)展
1.3.2數(shù)值積分算法
1.3.3時(shí)滯及時(shí)滯補(bǔ)償算法
1.3.4時(shí)滯穩(wěn)定性分析
1.3.5非線性數(shù)值子結(jié)構(gòu)的求解
1.3.6試驗(yàn)應(yīng)用
1.4調(diào)諧液柱阻尼器
1.4.1數(shù)值與試驗(yàn)研究
1.4.2工程應(yīng)用
1.5本書(shū)的主要工作與創(chuàng)新點(diǎn)
1.5.1本書(shū)的主要工作
1.5.2本書(shū)的創(chuàng)新點(diǎn)
第2章基于雙目標(biāo)機(jī)的RTHS系統(tǒng)構(gòu)建及驗(yàn)證
2.1引論
2.2清華大學(xué)RTHS系統(tǒng)
2.3雙目標(biāo)機(jī)RTHS系統(tǒng)構(gòu)建
2.3.1數(shù)值子結(jié)構(gòu)計(jì)算的任務(wù)分解策略及應(yīng)用
2.3.2位移外插及內(nèi)插策略
2.4雙目標(biāo)機(jī)RTHS系統(tǒng)的數(shù)值驗(yàn)證
2.4.1計(jì)算精度
2.4.2計(jì)算能力
2.5雙目標(biāo)機(jī)RTHS系統(tǒng)的試驗(yàn)驗(yàn)證
2.5.1單層鋼架有限元地基模型
2.5.2試驗(yàn)結(jié)果
2.6基于雙顯式數(shù)值積分算法的時(shí)滯補(bǔ)償法
2.6.1雙目標(biāo)機(jī)RTHS系統(tǒng)中的反饋力協(xié)調(diào)性問(wèn)題
2.6.2補(bǔ)償算法的提出及特性分析
2.6.3數(shù)值算例驗(yàn)證
2.6.4RTHS試驗(yàn)驗(yàn)證
2.7本章小結(jié)
第3章多自由度RTHS系統(tǒng)的時(shí)滯穩(wěn)定性分析
3.1引論
3.2基于離散根軌跡法的時(shí)滯穩(wěn)定性分析模型
3.2.1離散根軌跡法
3.2.2多自由度RTHS系統(tǒng)時(shí)滯穩(wěn)定性分析模型
3.3兩自由度結(jié)構(gòu)的RTHS系統(tǒng)時(shí)滯穩(wěn)定性分析
3.3.1失穩(wěn)機(jī)理分析
3.3.2參數(shù)影響分析
3.3.3考慮不同時(shí)滯補(bǔ)償算法的穩(wěn)定性分析
3.4時(shí)滯穩(wěn)定性的RTHS驗(yàn)證
3.4.1考慮有限元數(shù)值子結(jié)構(gòu)及單源時(shí)滯
3.4.2考慮有限元數(shù)值子結(jié)構(gòu)及多源時(shí)滯
3.5本章小結(jié)
第4章不同數(shù)值積分算法的時(shí)滯穩(wěn)定性和精度分析
4.1引論
4.2不同數(shù)值積分算法在RTHS系統(tǒng)中的特性變化
4.2.1典型數(shù)值積分算法簡(jiǎn)介
4.2.2理論分析
4.3數(shù)值算法的時(shí)滯穩(wěn)定性分析
4.3.1純時(shí)滯條件下的時(shí)滯穩(wěn)定性分析
4.3.2考慮時(shí)滯補(bǔ)償?shù)臅r(shí)滯穩(wěn)定性分析
4.4數(shù)值算法的時(shí)滯精度分析
4.4.1基于數(shù)值模擬的精度分析
4.4.2基于離散根軌跡的精度分析
4.5數(shù)值算法時(shí)滯穩(wěn)定性和精度的RTHS驗(yàn)證
4.6本章小結(jié)
第5章調(diào)諧液柱阻尼器的減震性能研究
5.1引論
5.2TLCD減震機(jī)理
5.2.1單自由度結(jié)構(gòu)TLCD系統(tǒng)動(dòng)力方程
5.2.2參數(shù)影響分析
5.3TLCD減震控制的RTHS驗(yàn)證
5.3.1試驗(yàn)思路
5.3.2試驗(yàn)?zāi)P?/p>
5.3.3結(jié)構(gòu)TLCD系統(tǒng)的穩(wěn)定性分析
5.3.4基于RTHS的TLCD減震試驗(yàn)
5.4基于RTHS的TLCD參數(shù)影響分析
5.4.1質(zhì)量比
5.4.2結(jié)構(gòu)阻尼比
5.4.3結(jié)構(gòu)剛度變化
5.4.4地震加速度峰值
5.5MTLCD用于單自由度鋼架的減震控制
5.6本章小結(jié)
第6章調(diào)諧液柱阻尼器在高層結(jié)構(gòu)減震中的應(yīng)用試驗(yàn)
6.1引論
6.2多自由度結(jié)構(gòu)TLCD系統(tǒng)動(dòng)力方程
6.2.1多自由度結(jié)構(gòu)STLCD系統(tǒng)
6.2.2多自由度結(jié)構(gòu)MTLCD系統(tǒng)
6.3足尺TLCD結(jié)構(gòu)地基系統(tǒng)的RTHS試驗(yàn)方法
6.4試驗(yàn)?zāi)P?/p>
6.4.1九層Benchmark鋼結(jié)構(gòu)
6.4.2足尺TLCD模型
6.5STLCD控制的RTHS試驗(yàn)
6.5.1STLCD動(dòng)力特性
6.5.2試驗(yàn)結(jié)果及分析
6.6MTLCD控制的RTHS試驗(yàn)
6.6.1MTLCD控制一階振型響應(yīng)
6.6.2MTLCD控制多階振型響應(yīng)
6.7考慮結(jié)構(gòu)地基相互作用的RTHSTLCD試驗(yàn)
6.7.1試驗(yàn)框架
6.7.2考慮有限地基SSI效應(yīng)
6.7.3考慮半無(wú)限地基SSI效應(yīng)
6.8本章小結(jié)
第7章調(diào)諧液體阻尼器關(guān)鍵問(wèn)題研究
7.1引論
7.2基于RTHS的TLD非線性剛度阻尼模型驗(yàn)證
7.2.1非線性剛度阻尼模型
7.2.2RTHS試驗(yàn)驗(yàn)證
7.3TLD幾何尺寸效應(yīng)影響研究
7.3.1考慮幾何尺寸效應(yīng)的試驗(yàn)結(jié)果
7.3.2考慮質(zhì)量比尺的試驗(yàn)結(jié)果
7.4TLD與TLCD減震效果對(duì)比
7.4.1試驗(yàn)?zāi)P?/p>
7.4.2試驗(yàn)結(jié)果
7.5本章小結(jié)
第8章結(jié)論與展望
8.1主要研究成果和結(jié)論
8.2研究展望
參考文獻(xiàn)在學(xué)期間發(fā)表的學(xué)術(shù)論文與研究成果致謝Contents實(shí)時(shí)耦聯(lián)動(dòng)力試驗(yàn)的大規(guī)模數(shù)值模擬研究與應(yīng)用
Contents
Chapter 1Introduction
1.1Background and Research Significance
1.2RealTime Hybrid Simulation Technique
1.2.1Traditional Structural Dynamic Experiments
1.2.2RealTime Hybrid Similation
1.3Review of RealTime Hybrid Simulation
1.3.1Development of Experimental System
1.3.2Numerical Algorithms
1.3.3Time Delay and Compensation Methods
1.3.4DelayDependent Stability Analysis
1.3.5Nonlinear Numerical Substructure
1.3.6Application
1.4Tuned Liquid Column Damper
1.4.1Numerical and Experimental Study
1.4.2Practical Application
1.5Research Content and Highlight
1.5.1Research Content
1.5.2Highlight
Chapter 2Construction and Verification of RTHS System Based on Dual
Target Computers
2.1Introduction
2.2RTHS System in Tsinghua University
2.3Construction of RTHS System Based on Dual Target
Computers
2.3.1Task Splitting Strategy in Numerical Substructure
Analysis
2.3.2Displacement Extrapolation and Interpolation
2.4Numerical Verification
2.4.1Computational Accuracy
2.4.2Computational Capability
2.5Experimentional Verification
2.5.1Single FrameFinite Element Foundation Model
2.5.2Experimental Results
2.6Time Delay Compensation Method Based on Guiλ
Algorithn
2.6.1Incoordination between the Real and Desired
Feedback Forces
2.6.2The Proposed Time Delay Compensation Method
and Its Characteristics
2.6.3Numerical Verification
2.6.4RTHS Verification
2.7Summary
Chapter 3DelayDependent Stability Analysis of MDOFRTHS System
3.1Introduction
3.2Theoretical Model for Stability Analysis Based on
DiscreteTime Root Locus Technique
3.2.1DiscreteTime Root Locus Technique
3.2.2The Construction of Stability Analysis Model for
MDOFRTHS System
3.3DelayDependent Stability Analysis of 2 DOFs RTHS
System
3.3.1Instability Mechanism Analysis
3.3.2Parameter Impact Analysis
3.3.3Stability Analysis Considering Different TimeDelay
Compensation Methods
3.4RTHS Verification
3.4.1Finite Element Numerical Substructure with Single
Delay Source
3.4.2Finite Element Numerical Substructure with Multiple
Delay Source
3.5SummaryChapter 4Stability and Accuracy Investigation of Different Integration
Algorithms
4.1Introduction
4.2Characteristics of Different Integration Algorithms in RTHS
System
4.2.1Brief Introduction of CommonlyUsed Integration
Algorithms
4.2.2Theoretical Analysis
4.3DelayDependent Stability Analysis of Integration
Algorithms
4.3.1Consideration of Pure Time Delay
4.3.2Consideration of Time Delay Compensation
4.4DelayDependent Accuarcy Analysis of Integration
Algorithms
4.4.1Accuarcy Analysis Based on Numerical Simulation
4.4.2Accuarcy Analysis Based on DiscreteTime Root
Locus Technique
4.5RTHS Verification
4.6Summary
Chapter 5Seismic Performance Analysis of Tuned Liquid Column
Damper
5.1Introduction
5.2Absorption Principle of TLCD
5.2.1Dynamic Equation of SDOF StructureTLCD
System
5.2.2Parametic Analysis
5.3RTHS Verfication of Control Effect of TLCD
5.3.1Experimental Method
5.3.2Experimental Model
5.3.3Stability Analysis of StructureTLCD System
5.3.4RTHS of StructureTLCD System
5.4Parametic Analysis of TLCD Based on RTHS
5.4.1Mass Ratio
5.4.2Structural Damping Ratio
5.4.3Structural Stiffness
5.4.4Peak Ground Acceleration
5.5Application of Applying MTLCD to Control SDOF Frame
5.6Summary
Chapter 6Experimental Study of Dynamic Response of HighRise
Structure under TLCD Control
6.1Introduction
6.2Dynamic Equation of MDOF StructureTLCD System
6.2.1MDOF StructureSTLCD System
6.2.2MDOF StructureMTLCD System
6.3RTHS Method of FullScale TLCDStructureFoundation
System
6.4Experimental Model
6.4.1NineStory Benchmark Steel Structure
6.4.2FullScale TLCD Model
6.5RTHS of STLCD
6.5.1Dynamic Characteristic of STLCD
6.5.2Expeimental Results
6.6RTHS of MTLCD
6.6.1Using MTLCD Control the FirstOrder Modal
Response
6.6.2Using MTLCD Control the MultiOrder Modal
Response
6.7RTHSTLCD Considering SoilStructure Interaction
6.7.1Experimental Framework
6.7.2Considering SSI in Finite Foundation
6.7.3Considering SSI in SemiInfinite Foundation
6.8Summary
Chapter 7Key Issue Study of Tuned Liquid Damper
7.1Introduction
7.2RTHS Verfication of Nonlinear StiffnessDamping Model
for TLD
7.2.1Nonlinear StiffnessDamping Model
7.2.2RTHS Verification
7.3Investigation of Size Effect of TLD
7.3.1Experiment Considering Size Effect
7.3.2Experiment Considering Mass Ratio Effect
7.4Comparison of Control Effect Between TLD and TLCD
7.4.1Experimental Model
7.4.2Experimental Results
7.5Summary
Chapter 8Conclusion and Prospect
8.1The Main Research Result and Conclusion
8.2Prospect