注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)計(jì)算機(jī)/網(wǎng)絡(luò)人工智能構(gòu)建機(jī)器學(xué)習(xí)應(yīng)用(影印版)

構(gòu)建機(jī)器學(xué)習(xí)應(yīng)用(影印版)

構(gòu)建機(jī)器學(xué)習(xí)應(yīng)用(影印版)

定 價(jià):¥89.00

作 者: Emmanuel Ameisen 著
出版社: 東南大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

購(gòu)買這本書可以去


ISBN: 9787564189518 出版時(shí)間: 2020-07-01 包裝: 平裝
開本: 16開 頁(yè)數(shù): 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  通過這本實(shí)用的教程,你將學(xué)會(huì)如何構(gòu)建一個(gè)機(jī)器學(xué)習(xí)模型驅(qū)動(dòng)的應(yīng)用示例,將最初的想法轉(zhuǎn)化成可部署的產(chǎn)品。數(shù)據(jù)科學(xué)家、軟件工程師和產(chǎn)品經(jīng)理——無(wú)論經(jīng)驗(yàn)豐富的的專家,還是剛剛?cè)腴T的新手——都可以循序漸進(jìn)地學(xué)習(xí)構(gòu)建真實(shí)機(jī)器學(xué)習(xí)應(yīng)用涉及的工具、最佳實(shí)踐,完成相關(guān)的技術(shù)挑戰(zhàn)。 學(xué)習(xí)設(shè)計(jì)、構(gòu)建和部署機(jī)器學(xué)習(xí)(ML)應(yīng)用所需的技能。通過這本實(shí)用的教程,你將構(gòu)建一個(gè)機(jī)器學(xué)習(xí)驅(qū)動(dòng)的示例應(yīng)用程序,將最初的想法轉(zhuǎn)化成可部署的產(chǎn)品。數(shù)據(jù)科學(xué)家、軟件工程師和產(chǎn)品經(jīng)理——無(wú)論經(jīng)驗(yàn)豐富的專家還是剛剛?cè)腴T的新手——都可以循序漸進(jìn)地學(xué)習(xí)構(gòu)建實(shí)際的機(jī)器學(xué)習(xí)應(yīng)用程序所涉及的工具、最佳實(shí)踐和技術(shù)挑戰(zhàn)。

作者簡(jiǎn)介

  Emmanuel Ameisen是Stripe公司的機(jī)器學(xué)習(xí)工程師,曾經(jīng)為L(zhǎng)ocal Motion和Zipcar公司實(shí)施并部署了預(yù)測(cè)分析和機(jī)器學(xué)習(xí)解決方案。最近,他正在領(lǐng)導(dǎo)洞見數(shù)據(jù)科學(xué)的人工智能項(xiàng)目群,指導(dǎo)著100多個(gè)機(jī)器學(xué)習(xí)項(xiàng)目。他擁有法國(guó)三所大學(xué)的人工智能、計(jì)算機(jī)工程和管理碩士學(xué)位。

圖書目錄

Preface
Part I. Find the Correct ML Approach
1. From Product Goal to ML Framing
Estimate What Is sible
Models
Data
Framing the ML Editor
Trying to Do It All with ML: An End-to-End Framework
The Simplest Approach: Being the Algorithm
Middle Ground: Learning from Our Experience
Monica Rogati: How to Choose and Prioritize ML Projects
Conclusion
2. Createa Plan
Measuring Success
Business Performance
Model Performance
Freshness and Distribution Shift
Speed
Estimate Scope and Challenges
Leverage Domain Expertise
Stand on the Shoulders of Giants
ML Editor Planning
Initial Plan for an Editor
Always Start with a Simple Model
To Make Regular Progress: Start Simple
Start with a Simple Pipeline
Pipeline for the ML Editor
Conclusion
Part II. Build a Working Pipeline
3. Build Your First End-to-End Pipeline
The Simplest Scaffolding
Prototype of an ML Editor
Parse and Clean Data
Tokenizing Text
Generating Features
Test Your Workflow
User Experience
Modeling Results
ML Editor Prototype Evaluation
Model
User Experience
Conclusion
4. Acquire an Initial Dataset
Iterate on Datasets
Do Data Science
Explore Your First Dataset
Be Efficient, Start Small
Insights Versus Products
A Data Quality Rubric
Label to Find Data Trends
Summary Statistics
Explore and Label Efficiently
Be the Algorithm
Data Trends
Let Data Inform Features and Models
Build Features Out of Patterns
ML Editor Features
Robert nro: How Do You Find, Label, and Leverage Data?
Conclusion
Part III. Iterate on Models
5. Train and Evaluate Your Model
The Simplest Appropriate Model
Simple Models
From Patterns to Models
Split Your Dataset
ML Editor Data Split
Judge Performance
Evaluate Your Model: Look Beyond Accuracy
Contrast Data and Predictions
Confusion Matrix
ROC Curve
Calibration Curve
Dimensionality Reduction for Errors
The Top-k Method
Other Models
Evaluate Feature Importancek
Directly from a Classifier
Black-Box Explainers
Conclusion
6. Debug Your ML Problems
Software Best Practices
ML-Specific Best Practices
Debug Wiring: Visualizing and Testing
Start with One Example
Test Your ML Code
Debug Training: Make Your Model Learn
Task Difficulty
Optimization Problems
Debug Generalization: Make Your Model Useful
Data Leakage
Overfitting
Consider the Task at Hand
Conclusion
7. Using Classifiers for Writing Recommendations
Extracting Recommendations from Models
What Can We Achieve Without a Model?
Extracting Global Feature Importance
Using a Model's Score
Extracting Local Feature Importance
Comparing Models
Version 1: The Report Card
Version 2: More Powerful, More Unclear
Version 3: Understandable Recommendations
Generating Editing Recommendations
Conclusion
Part IV. Deploy and Monitor
8. Considerations When Deploying Models
Data Concerns
Data Ownership
Data Bias
Systemic Bias
Modeling Concerns
Feedback Loops
Inclusive Model Performance
Considering Context
Adversaries
Abuse Concerns and Dual-Use
Chris Harland: Shipping Experiments
Conclusion
9. Choose Your Deployment Option
Server-Side Deployment
Streaming Application or API
Batch Predictions
Client-Side Deployment
On Device
Browser Side
Federated Learning: A Hybrid Approach
Conclusion
10. Build Safeguards for Models
Engineer Around Failures
Input and Output Checks
Model Failure Fal

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)