Chapter 1 Systems of Linear Equations and Matrices 第1章 線性方程組和矩陣(1) 1.1 Introduction to Systems of Linear Equations and Matrices 1.1 線性方程組和矩陣簡介(1) 1.2 Echelon Matrices and Consistent Systems of Linear Equations 1.2 階梯形矩陣和相容線性方程組(13) 1.3 Consistent Systems of Linear Equations and Possible Types of Their Solutions 1.3 相容線性方程組及其解的可能類型(20) 1.4 Matrix Operations 1.4 矩陣的運算(26) 1.5 Partition Matrices 1.5 分塊矩陣(31) 1.6 Invertible Matrices 1.6 可逆矩陣(33) Exercises 1 習(xí)題1(38) Chapter 2 Determinants 第2章 行列式(43) 2.1 Basic Concepts of Determinants 2.1 行列式的基本概念(43) 2.2 Properties and Calculation of Determinants 2.2 行列式的性質(zhì)與計算(49) 2.3 Cramer Rule 2.3 克拉默法則(56) 2.4 Calculate Inverse Matrices with Determinants 2.4 利用行列式求逆矩陣(60) Exercise 2 習(xí)題2(63) Chapter 3 Vector Spaces 第3章 向量空間(67) 3.1 Vector Spaces 3.1 向量空間(67) 3.2 Linear Dependence and Linear Independence of Vector Groups 3.2 向量組的線性相關(guān)與線性無關(guān)(71) 3.3 Rank of Matrices and Rank of Vector Groups 3.3 矩陣的秩與向量組的秩(77) 3.4 Bases and Dimensions of Vector Spaces 3.4 向量空間的基與維數(shù)(83) 3.5Solution Structure of Systems of Linear Equations 3.5 線性方程組解的結(jié)構(gòu)(86) 3.6 Inner Product and Orthogonality of Vectors 3.6 向量的內(nèi)積與正交(93) Exercise 3 習(xí)題3(97) Chapter 4 Eigenvalues and Eigenvectors of Matrices 第4章 矩陣的特征值與特征向量(101) 4.1 Eigenvalues and Eigenvectors of Matrices 4.1 矩陣的特征值與特征向量(101) 4.2 Similar Matrices 4.2 相似矩陣(108) 4.3 Diagonalization of Matrices 4.3 矩陣對角化(110) Exercise 4 習(xí)題4(118) Chapter 5Quadratic Forms 第5章 二次型(122) 5.1Quadratic Forms and Their Matrix Representations 5.1 二次型及其矩陣表示(122) 5.2 Standard Forms of Quadratic Forms 5.2 二次型的標準形(128) 5.3 Positive Definite Quadratic Forms 5.3 正定二次型(138) Exercise 5 習(xí)題5(142)