目錄 第1章緒論 1.1課題背景及研究意義 1.2研究概況 1.2.1國內(nèi)外研究動態(tài) 1.2.2問題與挑戰(zhàn) 1.3研究方法簡介 1.3.1性原理計算方法 1.3.2MD模擬 1.3.3熱導(dǎo)率的數(shù)值計算 1.4本書的主要內(nèi)容 第2章缺陷的散射機制與有效介質(zhì)理論 2.1本章引論 2.2多晶石墨烯的原子結(jié)構(gòu)及熱導(dǎo)率的計算方法 2.2.1多晶石墨烯的原子結(jié)構(gòu) 2.2.2熱導(dǎo)率的計算方法 2.3多晶石墨烯熱導(dǎo)率的計算結(jié)果 2.4多晶石墨烯的熱流散射機制 2.5有效介質(zhì)理論及其在多晶石墨烯中的應(yīng)用 2.5.1宏觀晶粒尺寸的多晶石墨烯的熱導(dǎo)率 2.5.2多晶石墨烯熱輸運的溫度依賴性 2.6有效介質(zhì)理論在GO中的應(yīng)用 2.7本章小結(jié) 第3章無序度與振動模態(tài)局域化 3.1本章引論 3.2二維雙層二氧化硅的結(jié)構(gòu)與計算方法 3.2.1二維雙層二氧化硅的原子結(jié)構(gòu) 3.2.2熱導(dǎo)率的計算方法 3.3晶體和非晶的二維雙層二氧化硅的熱輸運 3.4振動模態(tài)的局域化及相關(guān)的理論研究 3.4.1AllenFeldman理論 3.4.2低維材料中振動模態(tài)的局域化 3.4.3低維材料中熱流的局域化 3.4.4局部無序材料的熱輸運模型的討論 3.5本章小結(jié) 第4章弱耦合界面與擴散式輸運模型 4.1本章引論 4.2石墨烯/銅基底界面與擴散式熱輸運過程 4.2.1石墨烯/銅基底界面的構(gòu)建與結(jié)構(gòu)優(yōu)化 4.2.2石墨烯在基底上的形貌及水分子插層的影響 4.2.3水分子插層有效減弱界面的電學(xué)耦合 4.2.4擴散式熱輸運機制與水分子插層的影響 4.3石墨烯/細(xì)胞膜界面與擴散式熱輸運模型 4.3.1石墨烯/生物界面的原子結(jié)構(gòu) 4.3.2石墨烯/細(xì)胞膜界面的水分子層結(jié)構(gòu) 4.3.3石墨烯/細(xì)胞膜界面的熱耗散過程 4.3.4擴散式熱輸運機制與生物納米界面的熱耗散模型 4.4關(guān)于水分子插層及擴散式輸運機制的討論 4.5本章小結(jié) 第5章強耦合分子界面的熱輸運研究 5.1本章引論 5.2苯環(huán)分子結(jié)界面的熱輸運機制與熱穩(wěn)定性 5.2.1苯環(huán)分子結(jié)的原子模型與界面熱阻計算方法 5.2.2單分子結(jié)的熱輸運過程 5.2.3分子結(jié)的熱耗散與熱穩(wěn)定性 5.2.4苯環(huán)分子結(jié)界面的熱輸運機制 5.3SAM/金剛石分子結(jié)界面的熱輸運機制 5.3.1SAM/金剛石分子結(jié)模型與界面熱導(dǎo)的計算方法 5.3.2SAM分子結(jié)界面的熱輸運機制 5.3.3影響SAM分子結(jié)界面熱輸運性質(zhì)的其他因素 5.3.4SAM作為熱界面材料的應(yīng)用前景 5.4強耦合分子界面的熱輸運機制討論 5.5本章小結(jié) 第6章總結(jié)與展望 參考文獻(xiàn)附錄A與本書有關(guān)的物理常數(shù)及換算因子附錄B振動態(tài)密度求解程序附錄C振動譜能量密度求解程序附錄D熱導(dǎo)率求解程序附錄E作者發(fā)表的相關(guān)文章致謝 Contents低維材料及其界面的熱輸運機制與模型研究 Contents Chapter 1Introductions 1.1Background and Significance of the Research 1.2Research Situation 1.2.1Reseach Trends at Home and Abroad 1.2.2Problems and Challenges 1.3Brief Introduction of Research Methods 1.3.1FirstPrinciples Methods 1.3.2Molecular Dynamics Simulation 1.3.3Numerical Calculations of Thermal Conductivity 1.4The Main Contents of This Book Chapter 2The Scattering Mechanism of Defects and the Theory of Effective Medium 2.1The Introduction of This Chapter 2.2The Atomic Structure of Polycrystalline Graphene and the Method of Calculating Thermal Conductivity 2.2.1The Atomic Structure of Polycrystalline Graphene 2.2.2The Method of Calculating Thermal Conductivity 2.3The Simulated Results of Polycrystalline Graphene Thermal Conductivity 2.4Heat Flow Scattering Mechanism of Polycrystalline Graphene 2.5Effective Medium Theory and Its Application in Polycrystalline Graphene 2.5.1The Thermal Conductivity of Polycrystalline Graphene with Macroscopic Grain Size 2.5.2Temperature Dependence of Heat Transport of Polycrystalline Graphene 2.6Applications of Effective Medium Theory in Graphene Oxide 2.7Chapter Summary Chapter 3Disorder Degree and Vibration Mode Localization 3.1The Introduction of This Chapter 3.2Structure and Calculation Method of TwoDimensional Bilayer Silica 3.2.1Atomic Structure of TwoDimensional Bilayer Silica 3.2.2The Calculation Method of Thermal Conductivity 3.3Thermal Transports of Crystalline and Amorphous TwoDimensional Bilayer Silica 3.4Theoretical Study of Localization and Correlation of Vibration Modes 3.4.1AllenFeldman Theory 3.4.2Localization of Vibration Modes in Low Dimensional Materials 3.4.3Localization of Heat Flow in Low Dimensional Materials 3.4.4Discussion on the Thermal Transport Model of Local Disordered Materials 3.5Chapter Summary Chapter 4Weak Coupling Interfaces and Diffusional Models of Transport 4.1The Introduction of This Chapter 4.2The Interface of Graphene/Copper Substrate and the Process of Diffusional Heat Transport 4.2.1Construction and Structure Optimization of the Interface of Graphene/Copper Substrate 4.2.2The Morphology of Graphene on Substrate and Effects of the Intercalation of Water Molecules 4.2.3The Intercalation of Water Molecules Effectively Weaken the Electrical Coupling of the Interface 4.2.4Diffusional Heat Transport Mechanism and Effects of the Intercalation of Water Molecules 4.3The Interface of Graphene/Cell Membrane and the Model of Diffusional Heat Transport 4.3.1The Atomic Structure of the Interface of Graphene/ Biology 4.3.2The Water Molecular Layer Structure of the Interface of Graphene/Cell Membrane 4.3.3The Heat Dissipation Process of the Interface of Graphene/Cell Membrane 4.3.4Diffusional Heat Transport Mechanism and Heat Dissipation Models of Biological Nano Interfaces 4.4Discussion on the Intercalation of Water Molecules and Diffusional Heat Transport Mechanism 4.5Chapter Summary Chapter 5Study on Heat Transfer of Strongly Coupled Molecular Interfaces 5.1The Introduction of This Chapter 5.2The Heat Transport Mechanism and the Thermal Stability of Molecular Junction Interface of Benzene Ring 5.2.1The Atomic Model of Molecular Junction of Benzene Ring and the Calculation Method of the Thermal Resistance of the Interface 5.2.2The Heat Transport Process of Single Molecular Junction 5.2.3The Heat Dissipation and Thermal Stability of Molecular Junction 5.2.4The Heat Transport Mechanism of Molecular Junction Interface 5.3The Heat Transport Mechanism of Molecular Junction Interface of SAM/Diamond 5.3.1The Molecular Junction Model of SAM/Diamond and the Calculation Method of Interface Thermal Conductivity 5.3.2The Heat Transport Mechanism of Molecular Junction Interface of SAM 5.3.3Other Influential Factors of the Heat Transport Mechanism of Molecular Junction Interface of SAM 5.3.4Application Prospect of SAM as a Thermal Interface Material 5.4Discussion on the Heat Transport Mechanism of Strongly Coupled Molecular Interfaces 5.5Chapter Summary Chapter 6Summary and Outlook References Appendix APhysical Constants and Conversion Factors Related to This BookAppendix BThe Solving Program for Vibrational Density of StatesAppendix CThe Solving Program for Energy Density of Vibrational SpectrumAppendix DThe Solving Program for Thermal ConductivityArticles Related to This Book Published by the AuthorAcknowledgements