李輝,中共黨員,教授、博導(dǎo),湖北省特聘專(zhuān)家,***青年****”入選者,國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目首席科學(xué)家,IEEE高級(jí)會(huì)員。于1995年至2002年就讀于華中科技大學(xué)機(jī)械科學(xué)與工程學(xué)院,獲得工學(xué)學(xué)士與碩士學(xué)位。作者于2002年獲得新加坡科研局博士獎(jiǎng)學(xué)金,在新加坡國(guó)立大學(xué)(NUS)電子與計(jì)算機(jī)系和新加坡數(shù)據(jù)存儲(chǔ)研究所(DSI)進(jìn)行博士學(xué)位的聯(lián)合培養(yǎng),師從于新加坡數(shù)據(jù)存儲(chǔ)研究所高級(jí)研究科學(xué)家(Senior research scientist)劉波博士(國(guó)家****”特聘專(zhuān)家,教育部長(zhǎng)江學(xué)者講座教授)和新加坡國(guó)立大學(xué)電子與計(jì)算機(jī)工程系教授Chong Tow Chong(現(xiàn)任新加坡理工大學(xué)(SUTD)校長(zhǎng)),并于2007年獲得工學(xué)博士學(xué)位。作者于2008年進(jìn)入美國(guó)加州大學(xué)圣地亞哥分校(UCSD)從事博士后研究,師從于UCSD機(jī)械和科學(xué)工程學(xué)院前主席、磁記錄中心首席教授Frank E. Talke院士。作者于2005年至2013年就職于日立公司(Hitachi)亞洲研究與發(fā)展中心,其中于2006年在日立總部中央研究所交流半年,2008年起擔(dān)任研發(fā)中心項(xiàng)目領(lǐng)導(dǎo)及副經(jīng)理。在新加坡、日本和美國(guó)長(zhǎng)達(dá)11年的學(xué)習(xí)和科研工作經(jīng)歷,主攻磁記錄硬盤(pán)可靠性研究,實(shí)現(xiàn)微機(jī)電系統(tǒng)的高精度定位控制設(shè)計(jì)和應(yīng)用。作者主持完成與美國(guó)美國(guó)加州大學(xué)圣地亞哥分校,新加坡數(shù)據(jù)存儲(chǔ)研究所和日立日本本部的聯(lián)合科研項(xiàng)目7項(xiàng)。作者2012年入選國(guó)際電器與電子工程師學(xué)會(huì)(IEEE)高級(jí)會(huì)員,2013年入選***青年****”,獲聘為武漢大學(xué)教授、博士生導(dǎo)師,2014年被授予湖北省特聘專(zhuān)家稱(chēng)號(hào)。作者主要從事先進(jìn)制造工藝過(guò)程、在線(xiàn)監(jiān)測(cè)及產(chǎn)品可靠性等研究,發(fā)表SCI期刊論文80余篇、國(guó)際會(huì)議論文60余篇,在美國(guó)、新加坡、韓國(guó)做特邀報(bào)告4次。主編英文專(zhuān)著2部、中文專(zhuān)著1部,獲國(guó)家科學(xué)技術(shù)學(xué)術(shù)著作出版基金資助1次。提交/授權(quán)國(guó)家發(fā)明專(zhuān)利41項(xiàng)、授權(quán)軟件著作權(quán)3項(xiàng)。作者承擔(dān)科研項(xiàng)目包括國(guó)家自然科學(xué)基金委重大科研儀器研制項(xiàng)目(教育部唯一推薦)、國(guó)家重點(diǎn)研發(fā)計(jì)劃增材制造與激光制造”重點(diǎn)專(zhuān)項(xiàng)、國(guó)家重點(diǎn)研發(fā)計(jì)劃網(wǎng)絡(luò)協(xié)同制造和智能工廠”重點(diǎn)專(zhuān)項(xiàng)(首席)、JKW基礎(chǔ)加強(qiáng)項(xiàng)目、湖北省技術(shù)創(chuàng)新專(zhuān)項(xiàng)(重大項(xiàng)目)、廣東省重點(diǎn)領(lǐng)域研發(fā)計(jì)劃、四川省重點(diǎn)研發(fā)計(jì)劃、廣東省科技創(chuàng)新戰(zhàn)略專(zhuān)項(xiàng)資金自由申請(qǐng)項(xiàng)目、深圳市基礎(chǔ)研究計(jì)劃項(xiàng)目、深圳市協(xié)同創(chuàng)新計(jì)劃國(guó)際合作研究項(xiàng)目、華為公司技術(shù)咨詢(xún)報(bào)告等。
圖書(shū)目錄
Chapter 1 Introduction\t1 1.1 Background\t2 1.2 Motivation\t3 1.3 Outline\t4 Chapter 2 Investigation of the flow field in Laser-based Powder Bed Fusion manufacturing\t5 2.1 Introduction\t7 2.2 Simulation model of the L-PBF printer\t10 2.2.1 Problem description\t10 2.2.2 Geometric model of the L-PBF printer\t11 2.2.3 Numerical model of the L-PBF printer\t12 2.3 Simulation results\t16 2.3.1 Distribution of the flow field\t16 2.3.2 Distribution of the temperature field\t21 2.3.3 Distribution of spatter particles\t23 2.4 Conclusions\t28 References\t30 Chapter 3 Investigation of optimizing the flow field with fluid cover in Laser-based Powder Bed Fusion manufacturing process\t33 3.1 Introduction\t35 3.2 Simulation model of L-PBF printer\t37 3.2.1 Geometry of L-PBF printer with a fluid stabilizing cover\t37 3.2.2 Numerical model of printer with a fluid stabilizing cover\t37 3.2.3 Mesh of L-PBF printer with a fluid stabilizing cover\t39 3.2.4 Model of the fluid stabilizing cover and particles\t40 3.3 Simulation results and discussion\t43 3.3.1 Influence of the fluid stabilizing cover on the flow field\t43 3.3.2 Influence of fluid stabilizing cover on particle distribution and removing rate\t47 3.4 Summary and conclusions\t51 References\t53 Chapter 4 Numerical investigation of controlling spatters with negative pressure pipe in Laser-based Powder Bed Fusion process\t54 4.1 Introduction\t56 4.2 Simulation model of L-PBF printer\t59 4.2.1 Geometric model of L-PBF printer\t59 4.2.2 Numerical model of L-PBF printer\t61 4.3 Simulation results and discussions\t64 4.3.1 Effect of pipe diameter\t68 4.3.2 Effect of outlet flow rate\t70 4.3.3 Effect of initial particle velocity\t74 4.4 Summary and conclusions\t76 References\t78 Chapter 5 Evolution of molten pool during Laser-based Powder Bed Fusion of Ti-6Al-4V\t80 5.1 Introduction\t82 5.2 Modeling approach and numerical simulation\t85 5.2.1 Model establishing and assumptions\t85 5.2.2 Governing equations\t87 5.2.3 Heat source model\t87 5.2.4 Phase change\t88 5.2.5 Boundary conditions setup\t89 5.2.6 Mesh generation\t90 5.3 Experimental procedures\t91 5.4 Results and discussions\t92 5.4.1 Surface temperature distribution and morphology\t92 5.4.2 Formation and solidification of the molten pool\t94 5.4.3 Development of the evaporation region\t98 5.5 Conclusions\t101 References\t103 Chapter 6 Simulation of surface deformation control during Laser-based Powder Bed Fusion Al-Si-10Mg powder using an external magnetic field\t107 6.1 Introduction\t109 6.2 Modeling and simulation\t112 6.2.1 Modeling of L-PBF\t112 6.2.2 Mesh model and basic assumptions\t113 6.2.3 Heat transfer conditions\t114 6.2.4 Marangoni convection\t115 6.2.5 Phase-change material\t115 6.2.6 Lorentz force\t116 6.3 Results\t118 6.3.1 Velocity field in the molten pool\t118 6.3.2 Lorentz force in the MP\t121 6.3.3 Surface deformation of the sample\t123 6.4 Conclusions\t127 References\t128 Chapter 7 Influence of laser post- processing on pore evolution of Ti-6Al-4V alloy by Laser-based Powder Bed Fusion\t131 7.1 Introduction\t133 7.2 Experimental procedures\t136 7.2.1 Sample fabrication\t136 7.2.2 Determination of porosity by micro-CT\t137 7.3 Modeling and simulation\t140 7.3.1 Numerical model\t140 7.3.2 Moving Gaussian heat source\t143 7.3.3 Thermal boundary conditions\t143 7.3.4 Marangoni effect, surface tension and recoil pressure\t144 7.4 Numerical results and discussion\t145 7.5 Conclusions\t152 References\t153 Chapter 8 Evolution of multi pores in Ti-6Al-4V/Al-Si-10Mg alloy during laser post-processing\t157 8.1 Introduction\t159 8.2 Experimental procedures\t162 8.2.1 Sample preparation\t162 8.2.2 Detection of porosity by mirco-CT\t162 8.3 Model and simulation\t165 8.3.1 Simulation model\t165 8.3.2 Gaussian heat source\t167 8.3.3 Latent heat of phase change\t168 8.3.4 Level-set method\t169 8.3.5 Boundary conditions\t169 8.4 Numerical results and discussion\t171 8.5 Conclusions\t177 References\t179 Chapter 9 Investigation of laser polishing of four Laser-based Powder Bed Fusion alloy samples\t182 9.1 Introduction\t184 9.2 Model and theoretical calculation\t188 9.2.1 Physical model and assumptions\t188 9.2.2 Governing equations and boundary conditions\t190 9.2.3 Simulation results\t192 9.3 Experimental methods\t195 9.3.1 Sample fabrication\t195 9.3.2 Morphology observation by 3D optical profiler\t198 9.3.3 Experimental results\t199 9.4 Conclusions\t206 References\t208