注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)工業(yè)技術(shù)無線電電子學(xué)、電信技術(shù)數(shù)字圖像預(yù)處理技術(shù)及應(yīng)用

數(shù)字圖像預(yù)處理技術(shù)及應(yīng)用

數(shù)字圖像預(yù)處理技術(shù)及應(yīng)用

定 價:¥129.00

作 者: 王敏,周樹道 著
出版社: 科學(xué)出版社
叢編項:
標(biāo) 簽: 暫缺

ISBN: 9787030687784 出版時間: 2021-06-01 包裝: 平裝
開本: 16開 頁數(shù): 231 字?jǐn)?shù):  

內(nèi)容簡介

  《數(shù)字圖像預(yù)處理技術(shù)及應(yīng)用》是作者在多年進(jìn)行圖像去噪、圖像增強(qiáng)、圖像融合和圖像復(fù)原等數(shù)字圖像預(yù)處理研究的基礎(chǔ)上撰寫而成的,系統(tǒng)地論述和分析圖像去噪、圖像增強(qiáng)、圖像融合和圖像復(fù)原的基礎(chǔ)理論與相關(guān)技術(shù)?!稊?shù)字圖像預(yù)處理技術(shù)及應(yīng)用》共分 12章,主要闡述若干種數(shù)字圖像去噪、增強(qiáng)、融合與復(fù)原預(yù)處理算法,即基于小波域旋轉(zhuǎn)奇異值分解的圖像去噪算法、基于小波域奇異值差值的圖像去噪算法、基于分塊旋轉(zhuǎn)奇異值分解的圖像去噪算法、基于人工魚群與粒子群優(yōu)化的圖像增強(qiáng)算法、基于突變粒子群優(yōu)化的圖像增強(qiáng)算法、基于亮度小波變換和顏色改善的圖像增強(qiáng)算法、基于小波變換方向區(qū)域特征的圖像融合算法、基于刃邊函數(shù)和維納濾波的模糊圖像復(fù)原算法、基于分塊奇異值的圖像復(fù)原去噪算法、數(shù)字圖像預(yù)處理技術(shù)相關(guān)應(yīng)用等。

作者簡介

暫缺《數(shù)字圖像預(yù)處理技術(shù)及應(yīng)用》作者簡介

圖書目錄

目 錄
前言
第 1 章 緒論 1
1.1 研究背景及意義 1
1.2 數(shù)字圖像與數(shù)字圖像預(yù)處理概述 3
1.2.1 數(shù)字圖像的概念 3
1.2.2 數(shù)字圖像處理的概念及特點(diǎn) 4
1.2.3 數(shù)字圖像預(yù)處理研究范疇與方法 8
1.3 國內(nèi)外研究現(xiàn)狀 38
1.3.1 圖像去噪技術(shù) 38
1.3.2 圖像增強(qiáng)技術(shù) 40
1.3.3 圖像融合技術(shù) 42
1.3.4 圖像復(fù)原技術(shù) 43
1.4 數(shù)字圖像預(yù)處理技術(shù)應(yīng)用領(lǐng)域 45
1.4.1 航天和航空方面 45
1.4.2 生物醫(yī)學(xué)工程方面 46
1.4.3 工業(yè)和工程方面 46
1.4.4 軍事公安方面 46
1.4.5 文化藝術(shù)方面 46
1.4.6 機(jī)器視覺 46
1.4.7 視頻和多媒體系統(tǒng) 47
1.4.8 電子商務(wù) 47
1.5 本書的課題來源及組織結(jié)構(gòu) 47
1.5.1 本書的課題來源 47
1.5.2 本書主要內(nèi)容 47
1.6 本章小結(jié) 50
第 2 章 基于小波域旋轉(zhuǎn)奇異值分解的圖像去噪算法 51
2.1 概述 51
2.2 小波變換和奇異值分解的方向特性 52
2.2.1 小波變換及其方向特性 52
2.2.2 奇異值分解及其方向特性 54
2.3 基于小波域旋轉(zhuǎn)奇異值分解與邊緣保留的圖像去噪算法62
2.3.1 高頻子圖奇異值分解濾波 62
2.3.2 去噪重構(gòu)奇異值個數(shù)的確定 63
2.3.3 高頻子圖像多方向邊緣提取 64
2.3.4 算法流程 64
2.3.5 實驗仿真 65
2.4 本章小結(jié) 72
第 3 章 基于小波域奇異值差值的圖像去噪算法 74
3.1 概述 74
3.2 基于小波域奇異值差值建模的圖像去噪算法 75
3.2.1 奇異值差值特點(diǎn) 75
3.2.2 算法流程 78
3.2.3 奇異值差值建模 79
3.2.4 確定去噪奇異值 83
3.2.5 實驗仿真 83
3.3 本章小結(jié) 95
第 4 章 基于分塊旋轉(zhuǎn)奇異值分解的圖像去噪算法 97
4.1 概述 97
4.2 圖像分塊旋轉(zhuǎn) SVD 去噪 98
4.3 基于自適應(yīng)分塊旋轉(zhuǎn)的奇異值分解圖像去噪算法 98
4.3.1 自適應(yīng)分塊 SVD 98
4.3.2 去噪重構(gòu)奇異值個數(shù)的確定 100
4.3.3 算法流程 103
4.3.4 實驗仿真 103
4.4 本章小結(jié) 107
第 5 章 基于人工魚群與粒子群優(yōu)化的圖像增強(qiáng)算法 108
5.1 概述 108
5.2 圖像非線性增強(qiáng) 109
5.3 人工魚群算法及粒子群優(yōu)化算法 110
5.3.1 人工魚群算法 110
5.3.2 粒子群優(yōu)化算法 115
5.4 基于人工魚群與粒子群優(yōu)化混合的圖像自適應(yīng)增強(qiáng)算法 118
5.4.1 人工魚群及粒子群優(yōu)化算法各自的缺陷 118
5.4.2 人工魚群與粒子群優(yōu)化混合增強(qiáng)算法 119
5.4.3 實驗仿真 120
5.5 本章小結(jié) 122
第 6 章 基于突變粒子群優(yōu)化的圖像增強(qiáng)算法 123
6.1 概述 123
6.2 基于突變粒子群優(yōu)化算法的圖像自適應(yīng)增強(qiáng)算法 123
6.2.1 基本粒子群優(yōu)化算法 123
6.2.2 突變粒子群優(yōu)化算法 125
6.2.3 算法流程 126
6.2.4 實驗仿真 127
6.3 本章小結(jié) 128
第 7 章 基于亮度小波變換和顏色改善的圖像增強(qiáng)算法 129
7.1 概述 129
7.2 基于亮度小波變換和顏色改善的圖像去霧增強(qiáng)方法 129
7.2.1 小波變換圖像增強(qiáng)方法 129
7.2.2 圖像顏色改善方法 131
7.2.3 算法流程 132
7.2.4 實驗仿真 132
7.3 本章小結(jié) 134
第 8 章 基于小波變換方向區(qū)域特征的圖像融合算法 135
8.1 概述 135
8.2 小波變換圖像融合缺陷 136
8.2.1 普通的低頻空間頻率融合缺陷 136
8.2.2 單一的高頻能量或梯度融合缺陷 138
8.3 基于小波變換方向區(qū)域能量與梯度的圖像融合算法 140
8.3.1 低頻融合規(guī)則 141
8.3.2 高頻融合規(guī)則 141
8.3.3 實驗仿真 143
8.4 本章小結(jié) 147
第 9 章 基于刃邊函數(shù)和維納濾波的模糊圖像復(fù)原算法 148
9.1 概述 148
9.2 點(diǎn)擴(kuò)散函數(shù)估計 148
9.3 基于刃邊函數(shù)和最優(yōu)窗維納濾波的運(yùn)動模糊圖像復(fù)原算法 155
9.3.1 最優(yōu)窗維納濾波 155
9.3.2 點(diǎn)擴(kuò)散函數(shù)的確定 157
9.3.3 算法流程 159
9.3.4 實驗仿真 160
9.4 本章小結(jié) 163
第 10 章 基于分塊奇異值的圖像復(fù)原去噪算法 164
10.1 概述 164
10.2 基于奇異值分解的點(diǎn)擴(kuò)散函數(shù)估計 165
10.3 基于分塊奇異值導(dǎo)數(shù)的圖像復(fù)原去噪算法 167
10.3.1 奇異值重構(gòu)階數(shù)選取 168
10.3.2 實驗仿真 168
10.4 本章小結(jié) 171
第 11 章 數(shù)字圖像預(yù)處理技術(shù)的應(yīng)用 173
11.1 基于小波變換和改進(jìn)的奇異值分解的人臉識別技術(shù) 174
11.1.1 概述 174
11.1.2 具體方法 175
11.1.3 仿真實驗 189
11.1.4 小結(jié) 196
11.2 基于小波變換及形態(tài)學(xué)重構(gòu)的 SAR 圖像邊緣檢測算法 196
11.2.1 概述 196
11.2.2 具體方法 197
11.2.3 仿真實驗 199
11.2.4 小結(jié) 200
11.3 基于飽和度和區(qū)域一致性的靜態(tài)水上物體分割算法 200
11.3.1 概述 200
11.3.2 具體方法 201
11.3.3 仿真分析 204
11.3.4 小結(jié) 204
11.4 基于灰度共生矩陣和小波紋理的 SAR 水面圖像分割算法 205
11.4.1 概述 205
11.4.2 紋理特征提取 205
11.4.3 無監(jiān)督分割算法 207
11.4.4 仿真實驗及結(jié)果分析 208
11.4.5 小結(jié) 209
11.5 基于城市 GCP 模板的遙感圖像幾何校正研究算法 209
11.5.1 概述 209
11.5.2 遙感圖像幾何失真的原因 210
11.5.3 原始影像的校正方法 210
11.5.4 地面控制點(diǎn)模板 212
11.5.5 本節(jié)算法與實驗結(jié)果 212
11.5.6 小結(jié) 214
11.6 本章小結(jié) 215
第 12 章 總結(jié)與展望 216
12.1 本書總結(jié) 216
12.2 研究展望 217
參考文獻(xiàn) 219
彩圖

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號